A337205 Square array A(n,k) read by falling antidiagonals, where row n gives the sum of the divisors of the {primorial inflation of k, from which all primes <= A000040(n) have been discarded}.
1, 3, 1, 12, 1, 1, 7, 4, 1, 1, 72, 1, 1, 1, 1, 28, 24, 1, 1, 1, 1, 576, 4, 6, 1, 1, 1, 1, 15, 192, 1, 1, 1, 1, 1, 1, 91, 1, 48, 1, 1, 1, 1, 1, 1, 168, 13, 1, 8, 1, 1, 1, 1, 1, 1, 6912, 24, 1, 1, 1, 1, 1, 1, 1, 1, 1, 60, 2304, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 96768, 4, 576, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1344, 32256, 1, 96, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
The top left 15 x 5 corner of the array: ----+------------------------------------------------------------------------ 0 | 1, 3, 12, 7, 72, 28, 576, 15, 91, 168, 6912, 60, 96768, 1344, 546, ... 1 | 1, 1, 4, 1, 24, 4, 192, 1, 13, 24, 2304, 4, 32256, 192, 78, ... 2 | 1, 1, 1, 1, 6, 1, 48, 1, 1, 6, 576, 1, 8064, 48, 6, ... 3 | 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 96, 1, 1344, 8, 1, ... 4 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 168, 1, 1, ... etc. For example, the row 1 is the sum of the {primorial inflation of k, from which all primes <= prime(1) = 2 have been discarded}, that is, it is the sum of the odd divisors of the primorial inflation of k.
Links
Crossrefs
Programs
-
PARI
up_to = 105-1; A337205sq(n,k) = if(1==k,k, my(f=factor(k), h = #f~, prevpid=primepi(f[h,1]), e=f[h,2], p, s=1); forstep(k=h-1,0,-1, if(!k,pid=0,pid=primepi(f[k,1])); forstep(j=prevpid,(1+pid),-1, if(j<=n,return(s)); p=prime(j); s *= ((p^(1+e)-1)/(p-1))); if(pid<=n,return(s)); prevpid = pid; e += f[k,2]); (s)); A337205list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0, oo, for(b=1, a, i++; if(i > #v, return(v)); v[i] = A337205sq(b-1, (a-(b-1))))); (v); }; v337205 = A337205list(up_to); A337205(n) = v337205[1+n];
Comments