cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337205 Square array A(n,k) read by falling antidiagonals, where row n gives the sum of the divisors of the {primorial inflation of k, from which all primes <= A000040(n) have been discarded}.

Original entry on oeis.org

1, 3, 1, 12, 1, 1, 7, 4, 1, 1, 72, 1, 1, 1, 1, 28, 24, 1, 1, 1, 1, 576, 4, 6, 1, 1, 1, 1, 15, 192, 1, 1, 1, 1, 1, 1, 91, 1, 48, 1, 1, 1, 1, 1, 1, 168, 13, 1, 8, 1, 1, 1, 1, 1, 1, 6912, 24, 1, 1, 1, 1, 1, 1, 1, 1, 1, 60, 2304, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 96768, 4, 576, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1344, 32256, 1, 96, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Aug 22 2020

Keywords

Comments

Array is read by descending antidiagonals with n >= 0 and k >= 1 ranging as: (0, 1), (0, 2), (1, 1), (0, 3), (1, 2), (2, 1), (0, 4), (1, 3), (2, 2), (3, 1), ...

Examples

			The top left 15 x 5 corner of the array:
----+------------------------------------------------------------------------
  0 | 1, 3, 12,  7, 72, 28, 576, 15, 91, 168, 6912, 60, 96768, 1344, 546, ...
  1 | 1, 1,  4,  1, 24,  4, 192,  1, 13,  24, 2304,  4, 32256,  192,  78, ...
  2 | 1, 1,  1,  1,  6,  1,  48,  1,  1,   6,  576,  1,  8064,   48,   6, ...
  3 | 1, 1,  1,  1,  1,  1,   8,  1,  1,   1,   96,  1,  1344,    8,   1, ...
  4 | 1, 1,  1,  1,  1,  1,   1,  1,  1,   1,   12,  1,   168,    1,   1, ...
etc.
For example, the row 1 is the sum of the {primorial inflation of k, from which all primes <= prime(1) = 2 have been discarded}, that is, it is the sum of the odd divisors of the primorial inflation of k.
		

Crossrefs

Cf. A337203, A337204 (rows 0 and 1).
Cf. also arrays A337470, A337472.

Programs

  • PARI
    up_to = 105-1;
    A337205sq(n,k) = if(1==k,k, my(f=factor(k), h = #f~, prevpid=primepi(f[h,1]), e=f[h,2], p, s=1); forstep(k=h-1,0,-1, if(!k,pid=0,pid=primepi(f[k,1])); forstep(j=prevpid,(1+pid),-1, if(j<=n,return(s));  p=prime(j); s *= ((p^(1+e)-1)/(p-1))); if(pid<=n,return(s)); prevpid = pid; e += f[k,2]); (s));
    A337205list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0, oo, for(b=1, a, i++; if(i > #v, return(v)); v[i] = A337205sq(b-1, (a-(b-1))))); (v); };
    v337205 = A337205list(up_to);
    A337205(n) = v337205[1+n];

Formula

A(n,k) is the sum of divisors of A108951(k) from which all primes less than A000040(n) have been removed first.
A(n,k) is a multiple of A(n+1,k).