cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A336389 The least positive integer k for which A336835(k) >= n, where A336835(k) is the number of iterations of x -> A003961(x) needed before the result is deficient (sigma(x) < 2x), when starting from x=k.

Original entry on oeis.org

1, 6, 120, 19399380, 195534950863140268380, 538938984694949877040715541221415046162838700, 216487559804430601784907786655491617909711008142914104790481010259258659171900
Offset: 0

Views

Author

Antti Karttunen, Aug 07 2020

Keywords

Comments

For n > 0, the least k such that for at least n-1 iterations of map x -> A003961(x), starting from x=k, x stays nondeficient. In other words, from each a(n) starts a chain of at least n nondeficient numbers (A023196) obtained by successive prime shifts, e.g, for a(3) we have: 19399380 -> 334639305 -> 5391411025, where -> stands for applying A003961, the prime shift towards larger primes.
After 1 all other terms here are even, because if an odd number k is nondeficient, then A064989(k) is nondeficient also, where A064989 is the prime shift towards smaller primes. Moreover, because A047802 is defined for every n >= 0, also this sequence is.
From Peter Munn, Aug 13 2020 (Start)
Upper bounds for a(4) and a(5) are:
a(4) <= 195534950863140268380 = A064989(A064989(A064989(20169691981106018776756331))) = A337202(3).
a(5) <= 538938984694949877040715541221415046162838700 = A064989^4((A047802(4)*17*19)/137).
(End)
From David A. Corneth, Aug 21 2020: (Start)
Subsequence of A025487.
Let prime(n)# be the n-th primorial number, A002110(n) = A034386(prime(n)). Then:
a(6) <= 191# * 7#;
a(7) <= 311# * 5#;
a(8) <= 457# * 5#.
(End)
That each term occurs in A025487 follows because (1), the abundancy index of prime(i)^e is larger than that of prime(i+1)^e, that is, sigma(prime(i)^e)/prime(i)^e > sigma(prime(i+1)^e)/prime(i+1)^e, and (2) because the abundancy index of p^(e+d) * q^e is larger than that of p^e * q^(e+d), where p and q are distinct primes, p < q, and e, d > 0. Thus, for any n, we can first find a "prime-factorization compressed version" of it, A071364(n), and then sort the exponents to the non-ascending order with A046523 (and actually, A046523(A071364(n)) = A046523(n), so we need to apply just A046523), to get a term x of A025487, that certainly have the abundancy index >= n [and this inequivalence stays same for their successive prime shifts as well, the abundancy index of A003961(x) being at least that of A003961(n), etc.], and as A046523(n) <= n for all n, it is guaranteed that the least k for which A336835(k) >= n are found from A025487, which is the range of A046523.

Crossrefs

From term a(2) = 120 onward a subsequence of A337386.

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A336835(n) = { my(i=0); while(sigma(n) >= (n+n), i++; n = A003961(n)); (i); };
    A336389(n) = for(i=1,oo,if(A336835(i)>=n,return(i)));

Formula

For n >= 0, A336835(a(n)) >= n.
For all n >= 1, a(n) <= A337202(n-1) [= 2*A246277(A047802(n-1))].
a(n) = A025487(A337477(n)).
a(n) = A108951(A337478(n)).

Extensions

a(4) - a(6) from combined work of David A. Corneth and Peter Munn Aug 13-26 2020

A337203 Sum of the divisors of the primorial inflation of n.

Original entry on oeis.org

1, 3, 12, 7, 72, 28, 576, 15, 91, 168, 6912, 60, 96768, 1344, 546, 31, 1741824, 195, 34836480, 360, 4368, 16128, 836075520, 124, 2821, 225792, 600, 2880, 25082265600, 1170, 802632499200, 63, 52416, 4064256, 22568, 403, 30500034969600, 81285120, 733824, 744, 1281001468723200, 9360, 56364064623820800, 34560, 3600, 1950842880
Offset: 1

Views

Author

Antti Karttunen, Aug 22 2020

Keywords

Crossrefs

Row 0 of A337205, and of A337472.
Cf. also A323173.

Programs

  • Mathematica
    Array[DivisorSigma[1, Apply[Times, FactorInteger[#] /. {p_, e_} /; e > 0 :> Apply[Times, Prime@ Range@ PrimePi@ p]^e]] &, 46] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
    A337203(n) = sigma(A108951(n));
    
  • PARI
    A337203(n) = if(1==n,n, my(f=factor(n), h = #f~, prevpid=primepi(f[h,1]), e=f[h,2], p, s=1); forstep(i=h-1,0,-1, if(!i,pid=0,pid=primepi(f[i,1])); forstep(j=prevpid,(1+pid),-1, p=prime(j); s *= ((p^(1+e)-1)/(p-1))); if(!pid,return(s)); prevpid = pid; e += f[i,2]); (s));

Formula

a(n) = A000203(A108951(n)).

A337470 Square array read by falling antidiagonals, where A(n,k) = primorial inflation of k prime shifted n times with A003961.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 4, 15, 5, 1, 30, 9, 35, 7, 1, 12, 105, 25, 77, 11, 1, 210, 45, 385, 49, 143, 13, 1, 8, 1155, 175, 1001, 121, 221, 17, 1, 36, 27, 5005, 539, 2431, 169, 323, 19, 1, 60, 225, 125, 17017, 1573, 4199, 289, 437, 23, 1, 2310, 315, 1225, 343, 46189, 2873, 7429, 361, 667, 29, 1, 24, 15015, 1925, 5929, 1331, 96577, 5491, 12673, 529, 899, 31
Offset: 0

Views

Author

Antti Karttunen, Aug 28 2020

Keywords

Comments

Array is read by descending antidiagonals with n >= 0 and k >= 1 ranging as: (0, 1), (0, 2), (1, 1), (0, 3), (1, 2), (2, 1), (0, 4), (1, 3), (2, 2), (3, 1), ...

Examples

			The top left corner of the array begins as:
n/k | 1   2    3    4     5     6      7     8      9     10
----|------------------------------------------------------------
  0 | 1,  2,   6,   4,   30,   12,   210,    8,    36,    60, ...
  1 | 1,  3,  15,   9,  105,   45,  1155,   27,   225,   315, ...
  2 | 1,  5,  35,  25,  385,  175,  5005,  125,  1225,  1925, ...
  3 | 1,  7,  77,  49, 1001,  539, 17017,  343,  5929,  7007, ...
  4 | 1, 11, 143, 121, 2431, 1573, 46189, 1331, 20449, 26741, ...
  5 | 1, 13, 221, 169, 4199, 2873, 96577, 2197, 48841, 54587, ...
etc.
		

Crossrefs

Cf. A108951 (row 0), A337471 (row 1).
Cf. also A337205, A337472.

Programs

  • PARI
    up_to = 105-1; \\ Or 78-1.
    Ashifted_primorial(n,d) = prod(i=1, primepi(n), prime(i+d));
    A337470sq(n, k) = { my(f=factor(k)); prod(i=1, #f~, Ashifted_primorial(f[i, 1], n)^f[i, 2]); };
    A337470list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0, oo, for(b=1, a, i++; if(i > #v, return(v)); v[i] = A337470sq(b-1, (a-(b-1))))); (v); };
    v337470 = A337470list(up_to);
    A337470(n) = v337470[1+n];

Formula

A(n,k) = A242378(n,A108951(k)).

A337472 Square array read by falling antidiagonals, where A(n,k) = sigma(A337470(n, k)).

Original entry on oeis.org

1, 3, 1, 12, 4, 1, 7, 24, 6, 1, 72, 13, 48, 8, 1, 28, 192, 31, 96, 12, 1, 576, 78, 576, 57, 168, 14, 1, 15, 2304, 248, 1344, 133, 252, 18, 1, 91, 40, 8064, 684, 3024, 183, 360, 20, 1, 168, 403, 156, 24192, 1862, 5040, 307, 480, 24, 1, 6912, 624, 1767, 400, 60480, 3294, 8640, 381, 720, 30, 1
Offset: 0

Views

Author

Antti Karttunen, Aug 28 2020

Keywords

Comments

Array is read by descending antidiagonals with n >= 0 and k >= 1 ranging as: (0, 1), (0, 2), (1, 1), (0, 3), (1, 2), (2, 1), (0, 4), (1, 3), (2, 2), (3, 1), ...

Examples

			The top left corner of the array begins as:
n/k | 1   2    3    4     5     6       7     8      9     10
----|--------------------------------------------------------------
  0 | 1,  3,  12,   7,   72,   28,    576,   15,    91,   168, ...
  1 | 1,  4,  24,  13,  192,   78,   2304,   40,   403,   624, ...
  2 | 1,  6,  48,  31,  576,  248,   8064,  156,  1767,  2976, ...
  3 | 1,  8,  96,  57, 1344,  684,  24192,  400,  7581,  9576, ...
  4 | 1, 12, 168, 133, 3024, 1862,  60480, 1464, 24339, 33516, ...
  5 | 1, 14, 252, 183, 5040, 3294, 120960, 2380, 56181, 65880, ...
etc.
		

Crossrefs

Cf. A337203 (row 0).
Cf. also arrays A337205, A337470.

Programs

  • PARI
    up_to = 105-1; \\ Or 78-1.
    Ashifted_primorial(n,d) = prod(i=1, primepi(n), prime(i+d));
    A337470sq(n, k) = { my(f=factor(k)); prod(i=1, #f~, Ashifted_primorial(f[i, 1], n)^f[i, 2]); };
    A337472sq(n, k) = sigma(A337470sq(n, k));
    A337472list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0, oo, for(b=1, a, i++; if(i > #v, return(v)); v[i] = A337472sq(b-1, (a-(b-1))))); (v); };
    v337472 = A337472list(up_to);
    A337472(n) = v337472[1+n];

Formula

A(n,k) = A000203(A337470(n, k)).

A337204 Sum of the odd divisors of the primorial inflation of n.

Original entry on oeis.org

1, 1, 4, 1, 24, 4, 192, 1, 13, 24, 2304, 4, 32256, 192, 78, 1, 580608, 13, 11612160, 24, 624, 2304, 278691840, 4, 403, 32256, 40, 192, 8360755200, 78, 267544166400, 1, 7488, 580608, 3224, 13, 10166678323200, 11612160, 104832, 24, 427000489574400, 624, 18788021541273600, 2304, 240, 278691840, 901825033981132800, 4, 22971, 403
Offset: 1

Views

Author

Antti Karttunen, Aug 22 2020

Keywords

Crossrefs

Row 1 of A337205.
Cf. also A322819.

Programs

  • Mathematica
    Array[DivisorSum[Apply[Times, FactorInteger[#] /. {p_, e_} /; e > 0 :> Apply[Times, Prime@ Range@ PrimePi@ p]^e], # &, OddQ] &, 50] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    A000593(n) = sigma(n>>valuation(n, 2));
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
    A337204(n) = A000593(A108951(n));

Formula

a(n) = A000593(A108951(n)).
Showing 1-5 of 5 results.