cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A337473 Square array read by falling antidiagonals, where A(n,k) = floor(A337472(n, k)/A337470(n, k)); Abundancy index of A337470(n, k) floored down.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Aug 28 2020

Keywords

Comments

Array is read by descending antidiagonals with n >= 0 and k >= 1 ranging as: (0, 1), (0, 2), (1, 1), (0, 3), (1, 2), (2, 1), (0, 4), (1, 3), (2, 2), (3, 1), ...

Examples

			The top left corner of the array begins as:
n/k | 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
----|----------------------------------------------------------------------
  0 | 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 1, 3, 2, 3, 3, 3, 3, 3,
  1 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2,
  2 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,
  3 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  4 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  5 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
etc.
A337474 gives the distance in each column to the first 1 in that column, being 0 for columns 1, 2, 4, 8, 16, ..., where 1 is already in the top row.
		

Crossrefs

Programs

  • PARI
    up_to = 105858-1; \\ Or 105-1.
    A337473sq(n, k) = if(1==k,k, my(f=factor(k), h = #f~, prevpid=primepi(f[h,1]), e=f[h,2], p, s=1); forstep(i=h-1,0,-1, if(!i,pid=0,pid=primepi(f[i,1])); forstep(j=prevpid,(1+pid),-1, p=prime(j+n); s *= ((p^(1+e)-1)/((p-1)*(p^e)))); if(!pid,return(floor(s))); prevpid = pid; e += f[i,2]); floor(s));
    A337473list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0, oo, for(b=1, a, i++; if(i > #v, return(v)); v[i] = A337473sq(b-1, (a-(b-1))))); (v); };
    v337473 = A337473list(up_to);
    A337473(n) = v337473[1+n];

Formula

A(n,k) = floor(A337472(n, k)/A337470(n, k)).

A337203 Sum of the divisors of the primorial inflation of n.

Original entry on oeis.org

1, 3, 12, 7, 72, 28, 576, 15, 91, 168, 6912, 60, 96768, 1344, 546, 31, 1741824, 195, 34836480, 360, 4368, 16128, 836075520, 124, 2821, 225792, 600, 2880, 25082265600, 1170, 802632499200, 63, 52416, 4064256, 22568, 403, 30500034969600, 81285120, 733824, 744, 1281001468723200, 9360, 56364064623820800, 34560, 3600, 1950842880
Offset: 1

Views

Author

Antti Karttunen, Aug 22 2020

Keywords

Crossrefs

Row 0 of A337205, and of A337472.
Cf. also A323173.

Programs

  • Mathematica
    Array[DivisorSigma[1, Apply[Times, FactorInteger[#] /. {p_, e_} /; e > 0 :> Apply[Times, Prime@ Range@ PrimePi@ p]^e]] &, 46] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
    A337203(n) = sigma(A108951(n));
    
  • PARI
    A337203(n) = if(1==n,n, my(f=factor(n), h = #f~, prevpid=primepi(f[h,1]), e=f[h,2], p, s=1); forstep(i=h-1,0,-1, if(!i,pid=0,pid=primepi(f[i,1])); forstep(j=prevpid,(1+pid),-1, p=prime(j); s *= ((p^(1+e)-1)/(p-1))); if(!pid,return(s)); prevpid = pid; e += f[i,2]); (s));

Formula

a(n) = A000203(A108951(n)).

A337205 Square array A(n,k) read by falling antidiagonals, where row n gives the sum of the divisors of the {primorial inflation of k, from which all primes <= A000040(n) have been discarded}.

Original entry on oeis.org

1, 3, 1, 12, 1, 1, 7, 4, 1, 1, 72, 1, 1, 1, 1, 28, 24, 1, 1, 1, 1, 576, 4, 6, 1, 1, 1, 1, 15, 192, 1, 1, 1, 1, 1, 1, 91, 1, 48, 1, 1, 1, 1, 1, 1, 168, 13, 1, 8, 1, 1, 1, 1, 1, 1, 6912, 24, 1, 1, 1, 1, 1, 1, 1, 1, 1, 60, 2304, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 96768, 4, 576, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1344, 32256, 1, 96, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Aug 22 2020

Keywords

Comments

Array is read by descending antidiagonals with n >= 0 and k >= 1 ranging as: (0, 1), (0, 2), (1, 1), (0, 3), (1, 2), (2, 1), (0, 4), (1, 3), (2, 2), (3, 1), ...

Examples

			The top left 15 x 5 corner of the array:
----+------------------------------------------------------------------------
  0 | 1, 3, 12,  7, 72, 28, 576, 15, 91, 168, 6912, 60, 96768, 1344, 546, ...
  1 | 1, 1,  4,  1, 24,  4, 192,  1, 13,  24, 2304,  4, 32256,  192,  78, ...
  2 | 1, 1,  1,  1,  6,  1,  48,  1,  1,   6,  576,  1,  8064,   48,   6, ...
  3 | 1, 1,  1,  1,  1,  1,   8,  1,  1,   1,   96,  1,  1344,    8,   1, ...
  4 | 1, 1,  1,  1,  1,  1,   1,  1,  1,   1,   12,  1,   168,    1,   1, ...
etc.
For example, the row 1 is the sum of the {primorial inflation of k, from which all primes <= prime(1) = 2 have been discarded}, that is, it is the sum of the odd divisors of the primorial inflation of k.
		

Crossrefs

Cf. A337203, A337204 (rows 0 and 1).
Cf. also arrays A337470, A337472.

Programs

  • PARI
    up_to = 105-1;
    A337205sq(n,k) = if(1==k,k, my(f=factor(k), h = #f~, prevpid=primepi(f[h,1]), e=f[h,2], p, s=1); forstep(k=h-1,0,-1, if(!k,pid=0,pid=primepi(f[k,1])); forstep(j=prevpid,(1+pid),-1, if(j<=n,return(s));  p=prime(j); s *= ((p^(1+e)-1)/(p-1))); if(pid<=n,return(s)); prevpid = pid; e += f[k,2]); (s));
    A337205list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0, oo, for(b=1, a, i++; if(i > #v, return(v)); v[i] = A337205sq(b-1, (a-(b-1))))); (v); };
    v337205 = A337205list(up_to);
    A337205(n) = v337205[1+n];

Formula

A(n,k) is the sum of divisors of A108951(k) from which all primes less than A000040(n) have been removed first.
A(n,k) is a multiple of A(n+1,k).

A337470 Square array read by falling antidiagonals, where A(n,k) = primorial inflation of k prime shifted n times with A003961.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 4, 15, 5, 1, 30, 9, 35, 7, 1, 12, 105, 25, 77, 11, 1, 210, 45, 385, 49, 143, 13, 1, 8, 1155, 175, 1001, 121, 221, 17, 1, 36, 27, 5005, 539, 2431, 169, 323, 19, 1, 60, 225, 125, 17017, 1573, 4199, 289, 437, 23, 1, 2310, 315, 1225, 343, 46189, 2873, 7429, 361, 667, 29, 1, 24, 15015, 1925, 5929, 1331, 96577, 5491, 12673, 529, 899, 31
Offset: 0

Views

Author

Antti Karttunen, Aug 28 2020

Keywords

Comments

Array is read by descending antidiagonals with n >= 0 and k >= 1 ranging as: (0, 1), (0, 2), (1, 1), (0, 3), (1, 2), (2, 1), (0, 4), (1, 3), (2, 2), (3, 1), ...

Examples

			The top left corner of the array begins as:
n/k | 1   2    3    4     5     6      7     8      9     10
----|------------------------------------------------------------
  0 | 1,  2,   6,   4,   30,   12,   210,    8,    36,    60, ...
  1 | 1,  3,  15,   9,  105,   45,  1155,   27,   225,   315, ...
  2 | 1,  5,  35,  25,  385,  175,  5005,  125,  1225,  1925, ...
  3 | 1,  7,  77,  49, 1001,  539, 17017,  343,  5929,  7007, ...
  4 | 1, 11, 143, 121, 2431, 1573, 46189, 1331, 20449, 26741, ...
  5 | 1, 13, 221, 169, 4199, 2873, 96577, 2197, 48841, 54587, ...
etc.
		

Crossrefs

Cf. A108951 (row 0), A337471 (row 1).
Cf. also A337205, A337472.

Programs

  • PARI
    up_to = 105-1; \\ Or 78-1.
    Ashifted_primorial(n,d) = prod(i=1, primepi(n), prime(i+d));
    A337470sq(n, k) = { my(f=factor(k)); prod(i=1, #f~, Ashifted_primorial(f[i, 1], n)^f[i, 2]); };
    A337470list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0, oo, for(b=1, a, i++; if(i > #v, return(v)); v[i] = A337470sq(b-1, (a-(b-1))))); (v); };
    v337470 = A337470list(up_to);
    A337470(n) = v337470[1+n];

Formula

A(n,k) = A242378(n,A108951(k)).
Showing 1-4 of 4 results.