A337206 Cardinality of maximal level sets of Gini index on integer partitions.
1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 7, 8, 9, 11, 13, 15, 17, 21, 23, 28, 33, 38, 44, 52, 60, 72, 81, 95, 112, 128, 147, 175, 195, 233, 267, 305, 353, 412, 462, 533, 617, 703, 807, 932, 1052, 1210, 1389, 1569, 1785, 2060, 2315, 2642, 3023, 3405, 3876, 4413, 4968
Offset: 0
Keywords
Examples
For n=6 the maximal level set of the Gini index contains the partitions (3,3) and (4,1,1). So a(6)=2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Grant Kopitzke, The Gini Index of an Integer Partition, arXiv:2005.04284 [math.CO], 2020.
Programs
-
Maple
b:= proc(n, i, w) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, w)+expand(x^(w*i)*b(n-i, min(i, n-i), w+1)))) end: a:= n-> max(coeffs(b(n$2, 0))): seq(a(n), n=0..61); # Alois P. Heinz, Jan 20 2023
-
Mathematica
m = 75; p = Product[ 1/(1 - q^Binomial[i + 1, 2] x^i), {i, 1, m}]; psn = Expand@Normal@Series[ p, {x, 0, m}]; psnc = CoefficientList[CoefficientList[psn, {x}, {m}], {q}]; Map[Max, psnc]
Formula
G.f.: Product_{n=1..oo} 1/(1-q^(binomial(n+1,2))x^n)-1 = Sum_{n=1..oo} Sum_{lambda a partition of n} q^(binomial(n+1,2)-g(lambda))x^n, where g(lambda) is the Gini index of lambda.
Extensions
Typo in a(43) corrected by Alois P. Heinz, Jan 20 2023
Comments