cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337206 Cardinality of maximal level sets of Gini index on integer partitions.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 7, 8, 9, 11, 13, 15, 17, 21, 23, 28, 33, 38, 44, 52, 60, 72, 81, 95, 112, 128, 147, 175, 195, 233, 267, 305, 353, 412, 462, 533, 617, 703, 807, 932, 1052, 1210, 1389, 1569, 1785, 2060, 2315, 2642, 3023, 3405, 3876, 4413, 4968
Offset: 0

Views

Author

Grant Kopitzke, Aug 18 2020

Keywords

Comments

a(n) is a lower bound on A076269(n).

Examples

			For n=6 the maximal level set of the Gini index contains the partitions (3,3) and (4,1,1). So a(6)=2.
		

Crossrefs

Lower bound on A076269.

Programs

  • Maple
    b:= proc(n, i, w) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, w)+expand(x^(w*i)*b(n-i, min(i, n-i), w+1))))
        end:
    a:= n-> max(coeffs(b(n$2, 0))):
    seq(a(n), n=0..61);  # Alois P. Heinz, Jan 20 2023
  • Mathematica
    m = 75;
    p = Product[ 1/(1 - q^Binomial[i + 1, 2] x^i), {i, 1, m}];
    psn = Expand@Normal@Series[ p, {x, 0, m}];
    psnc = CoefficientList[CoefficientList[psn, {x}, {m}], {q}];
    Map[Max, psnc]

Formula

G.f.: Product_{n=1..oo} 1/(1-q^(binomial(n+1,2))x^n)-1 = Sum_{n=1..oo} Sum_{lambda a partition of n} q^(binomial(n+1,2)-g(lambda))x^n, where g(lambda) is the Gini index of lambda.
a(n) = max_{k=0..A161680(n)} A264034(n,k). - Alois P. Heinz, Jan 20 2023

Extensions

Typo in a(43) corrected by Alois P. Heinz, Jan 20 2023