A337232 Even composite integers m such that F(m)^2 == 1 (mod m), where F(m) is the m-th Fibonacci number.
4, 8, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 88, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514, 526
Offset: 1
Keywords
References
- D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, preprint for Mediterr. J. Math. 18, 47 (2021).
Programs
-
Maple
select(t -> combinat:-fibonacci(t) &^ 2 - 1 mod t = 0, 2*[$2..1000]); # Robert Israel, Sep 15 2020
-
Mathematica
Select[Range[2, 2000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 1]*Fibonacci[#, 1] - 1, #] &]
Comments