cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A337233 Composite integers m such that P(m)^2 == 1 (mod m), where P(m) is the m-th Pell number A000129(m). Also, odd composite integers m such that U(m)^2 == 1 (mod m) and V(m) == 6 (mod m), where U(m)=A001109(m) and V(m)=A003499(m) are the m-th generalized Lucas and Pell-Lucas numbers of parameters a=6 and b=1, respectively.

Original entry on oeis.org

35, 119, 169, 385, 741, 779, 899, 935, 961, 1105, 1121, 1189, 1443, 1479, 2001, 2419, 2555, 2915, 3059, 3107, 3383, 3605, 3689, 3741, 3781, 3827, 4199, 4795, 4879, 4901, 5719, 6061, 6083, 6215, 6265, 6441, 6479, 6601, 6895, 6929, 6931, 6965, 7055, 7107, 7801, 8119
Offset: 1

Views

Author

Ovidiu Bagdasar, Aug 20 2020

Keywords

Comments

For a, b integers, the following sequences are defined:
generalized Lucas sequences by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1,
generalized Pell-Lucas sequences by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a.
In general, one has U^2(p) == 1 and V(p)==a (mod p) whenever p is prime and b=1, -1.
The composite numbers satisfying these congruences may be called weak generalized Lucas-Bruckner pseudoprimes of parameters a and b.
For a=2 and b=-1, U(m) recovers A000129(m) (Pell numbers).
For a=6 and b=1, we have U(m)=A001109(m) and V(m)=A003499(m).
This sequence contains the odd composite integers for which the congruence A000129(m)^2 == 1 (mod m) holds.
This is also the sequence of odd composite numbers satisfying the congruences A001109(m)^2 == 1 and A003499(m)==a (mod m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337629 (a=6, b=-1), A337778 (a=4, b=1), A337779 (a=5, b=1).

Programs

  • Mathematica
    Select[Range[3, 25000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 2]*Fibonacci[#, 2] - 1, #] &]
    Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[2*ChebyshevT[#, 3] - 6, #] && Divisible[ChebyshevU[#-1, 3]*ChebyshevU[#-1, 3] - 1, #] &]

A337234 Odd composite integers m such that A006190(m)^2 == 1 (mod m).

Original entry on oeis.org

9, 33, 55, 63, 99, 119, 153, 231, 385, 399, 561, 649, 935, 981, 1023, 1071, 1179, 1189, 1199, 1441, 1595, 1763, 1881, 1953, 2001, 2065, 2255, 2289, 2465, 2703, 2751, 2849, 2871, 3519, 3599, 3655, 3927, 4059, 4081, 4187, 5015, 5151, 5559, 6061, 6119, 6215, 6273, 6431
Offset: 1

Views

Author

Ovidiu Bagdasar, Aug 20 2020

Keywords

Comments

If p is a prime, then A006190(p)^2 == 1 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2) = a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p) == 1 (mod p) whenever p is prime and b=-1.
For a=3, b=-1, U(n) recovers A006190(n) ("Bronze" Fibonacci numbers).

References

  • D. Andrica and O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2).

Programs

  • Mathematica
    Select[Range[3, 25000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 3]*Fibonacci[#, 3] - 1, #] &]

A337235 Even composite integers m such that A006190(m)^2 == 1 (mod m).

Original entry on oeis.org

4, 8, 16, 68, 1208, 1424, 3056, 3824, 3928, 20912, 52174, 63716, 88708, 123148, 161872, 582224, 887566, 17083292, 18900412, 34648888, 39991684, 44884912, 51390736, 103170448, 107825236, 132238514, 279900272, 686071244, 769252508, 3251623346, 3358311986, 3535011826
Offset: 1

Views

Author

Ovidiu Bagdasar, Aug 20 2020

Keywords

Comments

If p is a prime, then A006190(p)^2 == 1 (mod p).
This sequence contains the even composite integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2) = a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p) == 1 (mod p) whenever p is prime and b=-1,1.
For a=3, b=-1, U(n) recovers A006190(n) ("Bronze" Fibonacci numbers).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2), A337234 (a=3, odd terms).

Programs

  • Mathematica
    Select[Range[3, 25000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 5]*Fibonacci[#, 5] - 1, #] &]

Extensions

More terms from Amiram Eldar, Aug 21 2020
a(18)-a(32) from Daniel Suteu, Aug 29 2020

A337236 Composite integers m such that A001076(m)^2 == 1 (mod m).

Original entry on oeis.org

9, 63, 99, 119, 161, 207, 209, 231, 279, 323, 341, 377, 391, 549, 589, 671, 759, 779, 799, 897, 901, 1007, 1159, 1281, 1443, 1449, 1551, 1853, 1891, 2001, 2047, 2071, 2379, 2407, 2501, 2737, 2743, 2849, 2871, 2961, 3069, 3289, 3689, 3827, 4059, 4181, 4199, 4209, 4577
Offset: 1

Views

Author

Ovidiu Bagdasar, Aug 20 2020

Keywords

Comments

If p is a prime, then A001076(p)^2==1 (mod p).
This sequence contains the composite integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p)==1 (mod p) whenever p is prime and b=-1,1.
For a=4, b=-1, U(n) recovers A001076(n).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2), A337234 (a=3, odd terms), A337235 (a=3, even terms).

Programs

  • Mathematica
    Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 4]*Fibonacci[#, 4] - 1, #] &]

A337237 Odd composite integers such that A052918(m-1)^2 == 1 (mod m).

Original entry on oeis.org

9, 15, 25, 27, 35, 45, 65, 75, 91, 121, 135, 143, 175, 225, 275, 325, 385, 455, 533, 595, 615, 675, 935, 1035, 1107, 1325, 1359, 1431, 1495, 1547, 1573, 1935, 2015, 2255, 2275, 2775, 3025, 3059, 3575, 3605, 4025, 4081, 4235, 4355, 5005, 5089, 5475, 5525, 5719, 5993, 6165
Offset: 1

Views

Author

Ovidiu Bagdasar, Aug 20 2020

Keywords

Comments

If p is a prime, then A052918(p-1)^2 == 1 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2) = a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p) == 1 (mod p) whenever p is prime and b=-1,1 (this property is a form of pseudoprimality).
For a=5, b=-1, U(n) recovers A052918(n-1), for n=1,2,....

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2), A337234 (a=3, odd terms), A337235 (a=3, even terms), A337236 (a=4).

Programs

  • Mathematica
    Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 5]*Fibonacci[#, 5] - 1, #] &]

A338081 Odd composite integers such that A054413(m)^2 == 1 (mod m).

Original entry on oeis.org

21, 25, 35, 49, 51, 65, 85, 91, 119, 147, 161, 175, 221, 231, 245, 325, 357, 377, 391, 399, 425, 455, 539, 559, 561, 575, 595, 629, 637, 759, 791, 833, 1001, 1105, 1127, 1225, 1247, 1295, 1309, 1495, 1547, 1633, 1763, 1775, 1921, 2001, 2015, 2261, 2275, 2407
Offset: 1

Views

Author

Ovidiu Bagdasar, Oct 08 2020

Keywords

Comments

The generalized Lucas sequence of integer parameters (a,b) is defined by
U(m+2) = a*U(m+1)-b*U(m) and U(0)=0, U(1)=1.
Whenever p is prime and b=-1,1 we have U^2(p) == 1 (mod p).
Here we define the odd composite integers for which U^2(m) == 1 (mod m) holds, for a=7, b=-1, where U(m) is A054413(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2), A337234 (a=3, odd terms), A337235 (a=3, even terms), A337236 (a=4), A337237 (a=5), A338081 (a=6).

Programs

  • Mathematica
    Select[Range[3, 15000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 7]*Fibonacci[#, 7] - 1, #] &]

A356296 a(n) = Fibonacci(n)^2 mod n.

Original entry on oeis.org

0, 1, 1, 1, 0, 4, 1, 1, 4, 5, 1, 0, 1, 1, 10, 9, 1, 10, 1, 5, 4, 1, 1, 0, 0, 1, 22, 9, 1, 10, 1, 25, 4, 1, 25, 0, 1, 1, 4, 25, 1, 22, 1, 9, 40, 1, 1, 0, 22, 25, 4, 9, 1, 10, 25, 49, 4, 1, 1, 0, 1, 1, 22, 25, 25, 64, 1, 9, 4, 15, 1, 0, 1, 1, 25, 9, 4, 64, 1, 25, 49, 1, 1, 72, 25, 1
Offset: 1

Views

Author

R. J. Mathar, Aug 03 2022

Keywords

Crossrefs

Cf. A000045, A002708, A023172 (location of zeros), A337231, A337232.

Programs

  • Maple
    A356296 := proc(n)
        modp(combinat[fibonacci](n)^2,n) ;
    end proc:
    seq(A356296(n),n=1..120) ;
  • Mathematica
    Array[PowerMod[Fibonacci[#], 2, #] &, 86] (* Michael De Vlieger, Aug 03 2022 *)
  • PARI
    a(n) = lift(Mod(fibonacci(n), n)^2); \\ Michel Marcus, Aug 03 2022
    
  • Python
    from sympy import fibonacci
    def a(n): return pow(fibonacci(n), 2, n)
    print([a(n) for n in range(1, 87)]) # Michael S. Branicky, Aug 04 2022

Formula

a(n) = A000045(n)^2 mod n.

A338080 Odd composite integers such that A005668(m)^2 == 1 (mod m).

Original entry on oeis.org

9, 57, 63, 143, 171, 247, 323, 399, 407, 481, 629, 703, 721, 779, 899, 927, 1121, 1239, 1407, 1441, 1463, 1703, 1729, 2419, 2529, 2639, 2737, 3289, 3367, 3689, 4081, 4847, 4879, 4921, 5291, 5339, 5871, 6061, 6479, 6489, 6601, 6721, 6989, 7067, 7471, 7859, 8401, 8911, 8987, 9139, 9361
Offset: 1

Views

Author

Ovidiu Bagdasar, Oct 08 2020

Keywords

Comments

The generalized Lucas sequence of integer parameters (a,b) is defined by
U(m+2) = a*U(m+1)-b*U(m) and U(0)=0, U(1)=1.
Whenever p is prime and b=-1,1 we have U^2(p) == 1 (mod p).
Here we define the odd composite integers for which U^2(m) == 1 (mod m) holds, for a=6, b=-1, where U(m) is A005668(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2), A337234 (a=3, odd terms), A337235 (a=3, even terms), A337236 (a=4), A337237 (a=5).

Programs

  • Mathematica
    Select[Range[3, 15000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 6]*Fibonacci[#, 6] - 1, #] &]
Showing 1-8 of 8 results.