cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A337628 Odd composite integers m such that U(m)^2 == 1 (mod m) and V(m) == 5 (mod m), where U(m) and V(m) are the m-th generalized Lucas and Pell-Lucas numbers of parameters a=5 and b=-1, respectively.

Original entry on oeis.org

9, 27, 65, 121, 385, 533, 1035, 4081, 5089, 5993, 6721, 7107, 10877, 11285, 13281, 13741, 14705, 16721, 18901, 19601, 19951, 20705, 24769, 25345, 26599, 26937, 28741, 29161, 32639, 37949, 39185, 39985, 45305, 45451, 49105, 50553, 51085, 52801, 57205, 64297, 72385
Offset: 1

Views

Author

Ovidiu Bagdasar, Sep 19 2020

Keywords

Comments

Intersection of A335671 and A337237.
For a,b integers, the following sequences are defined:
generalized Lucas sequences by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1,
generalized Pell-Lucas sequences by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a.
These satisfy the identities U(p)^2 == 1 and V(p)==a (mod p) for p prime and b=1,-1.
These numbers may be called weak generalized Lucas-Bruckner pseudoprimes of parameters a and b.The current sequence is defined for a=5 and b=-1.

Crossrefs

Cf. A335671 and A337237.
Similar sequences: A337625 (a=1), A337626 (a=3) and A337627 (a=4).

Programs

  • Mathematica
    Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 5]*Fibonacci[#, 5] - 1, #] && Divisible[LucasL[#, 5] - 5, #] &]

Extensions

More terms from Amiram Eldar, Sep 19 2020

A338081 Odd composite integers such that A054413(m)^2 == 1 (mod m).

Original entry on oeis.org

21, 25, 35, 49, 51, 65, 85, 91, 119, 147, 161, 175, 221, 231, 245, 325, 357, 377, 391, 399, 425, 455, 539, 559, 561, 575, 595, 629, 637, 759, 791, 833, 1001, 1105, 1127, 1225, 1247, 1295, 1309, 1495, 1547, 1633, 1763, 1775, 1921, 2001, 2015, 2261, 2275, 2407
Offset: 1

Views

Author

Ovidiu Bagdasar, Oct 08 2020

Keywords

Comments

The generalized Lucas sequence of integer parameters (a,b) is defined by
U(m+2) = a*U(m+1)-b*U(m) and U(0)=0, U(1)=1.
Whenever p is prime and b=-1,1 we have U^2(p) == 1 (mod p).
Here we define the odd composite integers for which U^2(m) == 1 (mod m) holds, for a=7, b=-1, where U(m) is A054413(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2), A337234 (a=3, odd terms), A337235 (a=3, even terms), A337236 (a=4), A337237 (a=5), A338081 (a=6).

Programs

  • Mathematica
    Select[Range[3, 15000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 7]*Fibonacci[#, 7] - 1, #] &]

A338080 Odd composite integers such that A005668(m)^2 == 1 (mod m).

Original entry on oeis.org

9, 57, 63, 143, 171, 247, 323, 399, 407, 481, 629, 703, 721, 779, 899, 927, 1121, 1239, 1407, 1441, 1463, 1703, 1729, 2419, 2529, 2639, 2737, 3289, 3367, 3689, 4081, 4847, 4879, 4921, 5291, 5339, 5871, 6061, 6479, 6489, 6601, 6721, 6989, 7067, 7471, 7859, 8401, 8911, 8987, 9139, 9361
Offset: 1

Views

Author

Ovidiu Bagdasar, Oct 08 2020

Keywords

Comments

The generalized Lucas sequence of integer parameters (a,b) is defined by
U(m+2) = a*U(m+1)-b*U(m) and U(0)=0, U(1)=1.
Whenever p is prime and b=-1,1 we have U^2(p) == 1 (mod p).
Here we define the odd composite integers for which U^2(m) == 1 (mod m) holds, for a=6, b=-1, where U(m) is A005668(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2), A337234 (a=3, odd terms), A337235 (a=3, even terms), A337236 (a=4), A337237 (a=5).

Programs

  • Mathematica
    Select[Range[3, 15000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 6]*Fibonacci[#, 6] - 1, #] &]
Showing 1-3 of 3 results.