cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A337235 Even composite integers m such that A006190(m)^2 == 1 (mod m).

Original entry on oeis.org

4, 8, 16, 68, 1208, 1424, 3056, 3824, 3928, 20912, 52174, 63716, 88708, 123148, 161872, 582224, 887566, 17083292, 18900412, 34648888, 39991684, 44884912, 51390736, 103170448, 107825236, 132238514, 279900272, 686071244, 769252508, 3251623346, 3358311986, 3535011826
Offset: 1

Views

Author

Ovidiu Bagdasar, Aug 20 2020

Keywords

Comments

If p is a prime, then A006190(p)^2 == 1 (mod p).
This sequence contains the even composite integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2) = a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p) == 1 (mod p) whenever p is prime and b=-1,1.
For a=3, b=-1, U(n) recovers A006190(n) ("Bronze" Fibonacci numbers).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2), A337234 (a=3, odd terms).

Programs

  • Mathematica
    Select[Range[3, 25000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 5]*Fibonacci[#, 5] - 1, #] &]

Extensions

More terms from Amiram Eldar, Aug 21 2020
a(18)-a(32) from Daniel Suteu, Aug 29 2020

A337626 Odd composite integers m such that U(m)^2 == 1 (mod m) and V(m) == 3 (mod m), where U(m) and V(m) are the m-th generalized Lucas and Pell-Lucas numbers of parameters a=3 and b=-1, respectively.

Original entry on oeis.org

33, 119, 385, 561, 649, 1189, 1441, 2065, 2289, 2465, 2849, 4187, 6545, 12871, 13281, 14041, 16109, 18241, 22049, 23479, 24769, 25345, 28421, 31631, 34997, 38121, 38503, 41441, 45961, 48577, 50545, 53585, 56279, 58081, 59081, 61447, 63393, 66385, 75077, 91187
Offset: 1

Views

Author

Ovidiu Bagdasar, Sep 19 2020

Keywords

Comments

Intersection of A335669 and A337234.
For a,b integers, the following sequences are defined:
generalized Lucas sequences by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1,
generalized Pell-Lucas sequences by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a.
These satisfy the identities U(p)^2 == 1 and V(p)==a (mod p) for p prime and b=1,-1.
These numbers may be called weak generalized Lucas-Bruckner pseudoprimes of parameters a and b.The current sequence is defined for a=3 and b=-1.

Crossrefs

Programs

  • Mathematica
    Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 3]*Fibonacci[#, 3] - 1, #] && Divisible[LucasL[#, 3] - 3, #] &]

Extensions

More terms from Amiram Eldar, Sep 19 2020

A337236 Composite integers m such that A001076(m)^2 == 1 (mod m).

Original entry on oeis.org

9, 63, 99, 119, 161, 207, 209, 231, 279, 323, 341, 377, 391, 549, 589, 671, 759, 779, 799, 897, 901, 1007, 1159, 1281, 1443, 1449, 1551, 1853, 1891, 2001, 2047, 2071, 2379, 2407, 2501, 2737, 2743, 2849, 2871, 2961, 3069, 3289, 3689, 3827, 4059, 4181, 4199, 4209, 4577
Offset: 1

Views

Author

Ovidiu Bagdasar, Aug 20 2020

Keywords

Comments

If p is a prime, then A001076(p)^2==1 (mod p).
This sequence contains the composite integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p)==1 (mod p) whenever p is prime and b=-1,1.
For a=4, b=-1, U(n) recovers A001076(n).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2), A337234 (a=3, odd terms), A337235 (a=3, even terms).

Programs

  • Mathematica
    Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 4]*Fibonacci[#, 4] - 1, #] &]

A337237 Odd composite integers such that A052918(m-1)^2 == 1 (mod m).

Original entry on oeis.org

9, 15, 25, 27, 35, 45, 65, 75, 91, 121, 135, 143, 175, 225, 275, 325, 385, 455, 533, 595, 615, 675, 935, 1035, 1107, 1325, 1359, 1431, 1495, 1547, 1573, 1935, 2015, 2255, 2275, 2775, 3025, 3059, 3575, 3605, 4025, 4081, 4235, 4355, 5005, 5089, 5475, 5525, 5719, 5993, 6165
Offset: 1

Views

Author

Ovidiu Bagdasar, Aug 20 2020

Keywords

Comments

If p is a prime, then A052918(p-1)^2 == 1 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2) = a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p) == 1 (mod p) whenever p is prime and b=-1,1 (this property is a form of pseudoprimality).
For a=5, b=-1, U(n) recovers A052918(n-1), for n=1,2,....

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2), A337234 (a=3, odd terms), A337235 (a=3, even terms), A337236 (a=4).

Programs

  • Mathematica
    Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 5]*Fibonacci[#, 5] - 1, #] &]

A338081 Odd composite integers such that A054413(m)^2 == 1 (mod m).

Original entry on oeis.org

21, 25, 35, 49, 51, 65, 85, 91, 119, 147, 161, 175, 221, 231, 245, 325, 357, 377, 391, 399, 425, 455, 539, 559, 561, 575, 595, 629, 637, 759, 791, 833, 1001, 1105, 1127, 1225, 1247, 1295, 1309, 1495, 1547, 1633, 1763, 1775, 1921, 2001, 2015, 2261, 2275, 2407
Offset: 1

Views

Author

Ovidiu Bagdasar, Oct 08 2020

Keywords

Comments

The generalized Lucas sequence of integer parameters (a,b) is defined by
U(m+2) = a*U(m+1)-b*U(m) and U(0)=0, U(1)=1.
Whenever p is prime and b=-1,1 we have U^2(p) == 1 (mod p).
Here we define the odd composite integers for which U^2(m) == 1 (mod m) holds, for a=7, b=-1, where U(m) is A054413(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2), A337234 (a=3, odd terms), A337235 (a=3, even terms), A337236 (a=4), A337237 (a=5), A338081 (a=6).

Programs

  • Mathematica
    Select[Range[3, 15000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 7]*Fibonacci[#, 7] - 1, #] &]

A338080 Odd composite integers such that A005668(m)^2 == 1 (mod m).

Original entry on oeis.org

9, 57, 63, 143, 171, 247, 323, 399, 407, 481, 629, 703, 721, 779, 899, 927, 1121, 1239, 1407, 1441, 1463, 1703, 1729, 2419, 2529, 2639, 2737, 3289, 3367, 3689, 4081, 4847, 4879, 4921, 5291, 5339, 5871, 6061, 6479, 6489, 6601, 6721, 6989, 7067, 7471, 7859, 8401, 8911, 8987, 9139, 9361
Offset: 1

Views

Author

Ovidiu Bagdasar, Oct 08 2020

Keywords

Comments

The generalized Lucas sequence of integer parameters (a,b) is defined by
U(m+2) = a*U(m+1)-b*U(m) and U(0)=0, U(1)=1.
Whenever p is prime and b=-1,1 we have U^2(p) == 1 (mod p).
Here we define the odd composite integers for which U^2(m) == 1 (mod m) holds, for a=6, b=-1, where U(m) is A005668(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2), A337234 (a=3, odd terms), A337235 (a=3, even terms), A337236 (a=4), A337237 (a=5).

Programs

  • Mathematica
    Select[Range[3, 15000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 6]*Fibonacci[#, 6] - 1, #] &]
Showing 1-6 of 6 results.