cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A337627 Odd composite integers m such that U(m)^2 == 1 (mod m) and V(m) == 4 (mod m), where U(m) and V(m) are the m-th generalized Lucas and Pell-Lucas numbers of parameters a=4 and b=-1, respectively.

Original entry on oeis.org

9, 161, 341, 897, 901, 1281, 1853, 2737, 4181, 4209, 4577, 5473, 5611, 5777, 6119, 6721, 9701, 9729, 10877, 11041, 12209, 12349, 13201, 13481, 14981, 15251, 16771, 19669, 20591, 20769, 20801, 23323, 27403, 27613, 28421, 29281, 29489, 32929, 33001, 34561, 38801
Offset: 1

Views

Author

Ovidiu Bagdasar, Sep 19 2020

Keywords

Comments

Intersection of A335670 and A337236.
For a,b integers, the following sequences are defined:
generalized Lucas sequences by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1,
generalized Pell-Lucas sequences by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a.
These satisfy the identities U(p)^2 == 1 and V(p)==a (mod p) for p prime and b=1,-1.
These numbers may be called weak generalized Lucas-Bruckner pseudoprimes of parameters a and b.The current sequence is defined for a=4 and b=-1.

Crossrefs

Cf. A335670 and A337236. Similar sequences: A337625 (a=1), A337626 (a=3).

Programs

  • Mathematica
    Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 4]*Fibonacci[#, 4] - 1, #] && Divisible[LucasL[#, 4] - 4, #] &]

Extensions

More terms from Amiram Eldar, Sep 19 2020

A337628 Odd composite integers m such that U(m)^2 == 1 (mod m) and V(m) == 5 (mod m), where U(m) and V(m) are the m-th generalized Lucas and Pell-Lucas numbers of parameters a=5 and b=-1, respectively.

Original entry on oeis.org

9, 27, 65, 121, 385, 533, 1035, 4081, 5089, 5993, 6721, 7107, 10877, 11285, 13281, 13741, 14705, 16721, 18901, 19601, 19951, 20705, 24769, 25345, 26599, 26937, 28741, 29161, 32639, 37949, 39185, 39985, 45305, 45451, 49105, 50553, 51085, 52801, 57205, 64297, 72385
Offset: 1

Views

Author

Ovidiu Bagdasar, Sep 19 2020

Keywords

Comments

Intersection of A335671 and A337237.
For a,b integers, the following sequences are defined:
generalized Lucas sequences by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1,
generalized Pell-Lucas sequences by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a.
These satisfy the identities U(p)^2 == 1 and V(p)==a (mod p) for p prime and b=1,-1.
These numbers may be called weak generalized Lucas-Bruckner pseudoprimes of parameters a and b.The current sequence is defined for a=5 and b=-1.

Crossrefs

Cf. A335671 and A337237.
Similar sequences: A337625 (a=1), A337626 (a=3) and A337627 (a=4).

Programs

  • Mathematica
    Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 5]*Fibonacci[#, 5] - 1, #] && Divisible[LucasL[#, 5] - 5, #] &]

Extensions

More terms from Amiram Eldar, Sep 19 2020

A337777 Even composite integers m such that U(m)^2 == 1 (mod m) and V(m) == 3 (mod m), where U(m)=A001906(m) and V(m)=A005248(m) are the m-th generalized Lucas and Pell-Lucas numbers of parameters a=3 and b=1, respectively.

Original entry on oeis.org

4, 44, 836, 1364, 2204, 7676, 7964, 9164, 11476, 12524, 23804, 31124, 32642, 39556, 73124, 80476, 99644, 110564, 128876, 156484, 192676, 199924, 287804, 295196, 315524, 398924, 542242, 715604, 780044, 934876, 987524, 1050524, 1339516, 1390724, 1891124, 1996796
Offset: 1

Views

Author

Ovidiu Bagdasar, Sep 20 2020

Keywords

Comments

For a, b integers, the following sequences are defined:
generalized Lucas sequences by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1;
generalized Pell-Lucas sequences by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a.
These satisfy the identities U(p)^2 == 1 and V(p)==a (mod p) for p prime and b=1,-1.
These numbers may be called weak generalized Lucas-Bruckner pseudoprimes of parameters a and b. The current sequence is defined for a=3 and b=1.

Crossrefs

Cf. A337626.

Programs

  • Mathematica
    Select[Range[2, 20000, 2], CompositeQ[#] && Divisible[LucasL[2#] - 3, #] && Divisible[ChebyshevU[#-1, 3/2]*ChebyshevU[#-1, 3/2] - 1, #] &]

Extensions

More terms from Amiram Eldar, Sep 21 2020

A337629 Odd composite integers m such that U(m)^2 == 1 (mod m) and V(m) == 6 (mod m), where U(m) and V(m) are the m-th generalized Lucas and Pell-Lucas numbers of parameters a=6 and b=-1, respectively.

Original entry on oeis.org

57, 481, 629, 721, 779, 1121, 1441, 1729, 2419, 2737, 6721, 7471, 8401, 9361, 10561, 11521, 11859, 12257, 15281, 16321, 16583, 18849, 24721, 25441, 25593, 33649, 35219, 36481, 36581, 37949, 39169, 41041, 45961, 46999, 50681, 52417, 53041, 53521, 54757, 55537
Offset: 1

Views

Author

Ovidiu Bagdasar, Sep 19 2020

Keywords

Comments

For a,b integers, the following sequences are defined:
generalized Lucas sequences by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1,
generalized Pell-Lucas sequences by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a.
These satisfy the identities U(p)^2 == 1 and V(p)==a (mod p) for p prime and b=1,-1.
These numbers may be called weak generalized Lucas-Bruckner pseudoprimes of parameters a and b. The current sequence is defined for a=6 and b=-1.

Crossrefs

Cf. A337625 (a=1), A337626 (a=3), A337627 (a=4), A337628 (a=5).

Programs

  • Mathematica
    Select[Range[3, 15000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 6]*Fibonacci[#, 6] - 1, #] && Divisible[LucasL[#, 6] - 6, #] &]

Extensions

More terms from Amiram Eldar, Sep 19 2020

A337630 Odd composite integers m such that U(m)^2 == 1 (mod m) and V(m) == 7 (mod m), where U(m) and V(m) are the m-th generalized Lucas and Pell-Lucas numbers of parameters a=7 and b=-1, respectively.

Original entry on oeis.org

25, 51, 91, 161, 325, 425, 561, 791, 1105, 1633, 1921, 2001, 2465, 2599, 2651, 2737, 7345, 8449, 9361, 10325, 10465, 10825, 11285, 12025, 12291, 13021, 15457, 17111, 18193, 18881, 19307, 20705, 20833, 21931, 24081, 24661, 31521, 32305, 37925, 38801, 39059, 40641
Offset: 1

Views

Author

Ovidiu Bagdasar, Sep 19 2020

Keywords

Comments

For a,b integers, the following sequences are defined:
generalized Lucas sequences by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1,
generalized Pell-Lucas sequences by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a.
These satisfy the identities U(p)^2 == 1 and V(p)==a (mod p) for p prime and b=1,-1.
These numbers may be called weak generalized Lucas-Bruckner pseudoprimes of parameters a and b. The current sequence is defined for a=7 and b=-1.

Crossrefs

Cf. A337625 (a=1), A337626 (a=3), A337627 (a=4), A337628 (a=5), A337629 (a=6).

Programs

  • Mathematica
    Select[Range[3, 15000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 7]*Fibonacci[#, 7] - 1, #] && Divisible[LucasL[#, 7] - 7, #] &]

Extensions

More terms from Amiram Eldar, Sep 19 2020
Showing 1-5 of 5 results.