cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337255 Irregular triangle read by rows where T(n,k) is the number of strict length-k chains of divisors starting with n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 5, 7, 3, 1, 1, 1, 3, 2, 1, 3, 2, 1, 4, 6, 4, 1, 1, 1, 1, 5, 7, 3, 1, 1, 1, 5, 7, 3, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 15, 13, 4, 1, 2, 1, 1, 3, 2, 1, 3, 3, 1, 1, 5, 7, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2020

Keywords

Examples

			Sequence of rows begins:
     1: {1}           16: {1,4,6,4,1}
     2: {1,1}         17: {1,1}
     3: {1,1}         18: {1,5,7,3}
     4: {1,2,1}       19: {1,1}
     5: {1,1}         20: {1,5,7,3}
     6: {1,3,2}       21: {1,3,2}
     7: {1,1}         22: {1,3,2}
     8: {1,3,3,1}     23: {1,1}
     9: {1,2,1}       24: {1,7,15,13,4}
    10: {1,3,2}       25: {1,2,1}
    11: {1,1}         26: {1,3,2}
    12: {1,5,7,3}     27: {1,3,3,1}
    13: {1,1}         28: {1,5,7,3}
    14: {1,3,2}       29: {1,1}
    15: {1,3,2}       30: {1,7,12,6}
Row n = 24 counts the following chains:
  24  24/1   24/2/1   24/4/2/1   24/8/4/2/1
      24/2   24/3/1   24/6/2/1   24/12/4/2/1
      24/3   24/4/1   24/6/3/1   24/12/6/2/1
      24/4   24/4/2   24/8/2/1   24/12/6/3/1
      24/6   24/6/1   24/8/4/1
      24/8   24/6/2   24/8/4/2
      24/12  24/6/3   24/12/2/1
             24/8/1   24/12/3/1
             24/8/2   24/12/4/1
             24/8/4   24/12/4/2
             24/12/1  24/12/6/1
             24/12/2  24/12/6/2
             24/12/3  24/12/6/3
             24/12/4
             24/12/6
		

Crossrefs

A008480 gives rows ends.
A067824 gives row sums.
A073093 gives row lengths.
A334996 appears to be the case of chains ending with 1.
A337071 is the sum of row n!.
A000005 counts divisors.
A001055 counts factorizations.
A001222 counts prime factors with multiplicity.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A122651 counts chains of divisors summing to n.
A167865 counts chains of divisors > 1 summing to n.
A251683 counts chains of divisors from n to 1 by length.
A253249 counts nonempty chains of divisors.
A337070 counts chains of divisors starting with A006939(n).
A337256 counts chains of divisors.

Programs

  • Maple
    b:= proc(n) option remember; expand(x*(1 +
          add(b(d), d=numtheory[divisors](n) minus {n})))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
    seq(T(n), n=1..50);  # Alois P. Heinz, Aug 23 2020
  • Mathematica
    chss[n_]:=Prepend[Join@@Table[Prepend[#,n]&/@chss[d],{d,Most[Divisors[n]]}],{n}];
    Table[Length[Select[chss[n],Length[#]==k&]],{n,30},{k,1+PrimeOmega[n]}]