A337281 a(n) = n*T(n), where T(n) = A000073(n) = n-th tribonacci number.
0, 0, 2, 3, 8, 20, 42, 91, 192, 396, 810, 1639, 3288, 6552, 12978, 25575, 50176, 98056, 190962, 370747, 717800, 1386252, 2671130, 5136291, 9857856, 18886900, 36127962, 69005439, 131621560, 250735856, 477077730, 906732175, 1721538560, 3265353168, 6187918434, 11716102195, 22164965064, 41900163524
Offset: 0
Keywords
References
- Raphael Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,1,0,-3,-2,-1).
Crossrefs
Cf. A000073.
Programs
-
Mathematica
LinearRecurrence[{2,1,0,-3,-2,-1},{0,0,2,3,8,20},40] (* Harvey P. Dale, Dec 19 2023 *)
-
PARI
a(n)= n * ([0, 1, 0; 0, 0, 1; 1, 1, 1]^n)[1, 3] \\ David A. Corneth, Sep 13 2020, after Charles R Greathouse IV
-
PARI
concat([0,0], Vec(x^2*(2 - x + x^3) / (1 - x - x^2 - x^3)^2 + O(x^36))) \\ Colin Barker, Sep 13 2020
Formula
From Colin Barker, Sep 13 2020: (Start)
G.f.: x^2*(2 - x + x^3) / (1 - x - x^2 - x^3)^2.
a(n) = 2*a(n-1) + a(n-2) - 3*a(n-4) - 2*a(n-5) - a(n-6) for n>5.
(End)