cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337292 a(n) = 4*binomial(5*n,n)/(5*n-1).

Original entry on oeis.org

5, 20, 130, 1020, 8855, 81900, 791120, 7887660, 80560285, 838553320, 8863227100, 94871786100, 1026317094705, 11203116342560, 123243929011680, 1364973221797900, 15207477517956825, 170321264840835900, 1916512328325665070, 21655893753689280120
Offset: 1

Views

Author

Lucas A. Brown, Aug 21 2020

Keywords

Comments

a(n) is the number of lattice paths from (0,0) to (4n,n) using only the steps (1,0) and (0,1) and whose only lattice points on the line y = x/4 are the path's endpoints.

Crossrefs

Programs

  • Mathematica
    Array[4 Binomial[5 #, #]/(5 # - 1) &, 20] (* Michael De Vlieger, Aug 21 2020 *)
  • PARI
    a(n) = {4*binomial(5*n,n)/(5*n-1)} \\ Andrew Howroyd, Aug 21 2020

Formula

a(n) = 5*A118971(n-1).
G.f.: 5*x*F(x)^4 where F(x) = 1 + x*F(x)^5 is the g.f. of A002294.
D-finite with recurrence 8*n*(4*n-3)*(2*n-1)*(4*n-1)*a(n) -5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-6)*a(n-1)=0., a(0)=1. - R. J. Mathar, Jan 26 2025
G.f.: -4*4F3(-1/5,1/5,2/5,3/5; 1/4,1/2,3/4; 3125*x/256) . - R. J. Mathar, Aug 10 2025