A337331 Number of pairs of divisors of n, (d1,d2), with d1 <= d2, whose average is an integer and divides n.
1, 2, 2, 3, 2, 5, 2, 4, 3, 4, 2, 9, 2, 4, 5, 5, 2, 8, 2, 6, 4, 4, 2, 13, 3, 4, 4, 7, 2, 12, 2, 6, 4, 4, 4, 15, 2, 4, 4, 9, 2, 10, 2, 6, 9, 4, 2, 17, 3, 6, 4, 6, 2, 11, 4, 10, 4, 4, 2, 23, 2, 4, 6, 7, 4, 11, 2, 6, 4, 8, 2, 22, 2, 4, 8, 6, 4, 10, 2, 12, 5, 4, 2, 21, 4, 4, 4, 8, 2, 22, 5, 6, 4, 4, 4, 21, 2, 6, 6, 9
Offset: 1
Keywords
Examples
a(6) = 5; The divisors of 6 are {1,2,3,6}. The pairs of divisors, (d1,d2), with d1 <= d2, whose average divides 6 are: (1,1), (1,3), (2,2), (3,3) and (6,6). So a(6) = 5. a(7) = 2; The divisors of 7 are {1,7}. The pairs of divisors, (d1,d2), with d1 <= d2, whose average divides 7 are: (1,1) and (7,7). So a(7) = 2. a(8) = 4; The divisors of 8 are {1,2,4,8}. The pairs of divisors, (d1,d2), with d1 <= d2, whose average divides 8 are: (1,1), (2,2), (4,4), and (8,8). So a(8) = 4. a(9) = 3; The divisors of 9 are {1,3,9}. The pairs of divisors, (d1,d2), with d1 <= d2, whose average divides 9 are: (1,1), (3,3) and (9,9). So a(9) = 3.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Cf. A000005.
Programs
-
Mathematica
Table[Sum[Sum[(1 - Ceiling[(i + k)/2] + Floor[(i + k)/2]) (1 - Ceiling[2 n/(i + k)] + Floor[2 n/(i + k)]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, n}], {n, 100}]
-
PARI
A337331(n) = { my(divs=divisors(n), d1, d2); sum(i=1, #divs, d1=divs[i]; sum(j=i, #divs, d2=divs[j]; !((2*n)%(d1+d2)) * !((d1+d2)%2))); }; \\ Antti Karttunen, Nov 27 2024
Formula
a(n) = Sum_{d1|n, d2|n, d1<=d2, (d1+d2)|(2*n), 2|(d1+d2)} 1.
Extensions
Definition and formula clarified, and more terms added by Antti Karttunen, Nov 27 2024
Comments