cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A350073 a(n) = A064989(sigma(n)), where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p.

Original entry on oeis.org

1, 2, 1, 5, 2, 2, 1, 6, 11, 4, 2, 5, 5, 2, 2, 29, 4, 22, 3, 10, 1, 4, 2, 6, 29, 10, 3, 5, 6, 4, 1, 20, 2, 8, 2, 55, 17, 6, 5, 12, 10, 2, 7, 10, 22, 4, 2, 29, 34, 58, 4, 25, 8, 6, 4, 6, 3, 12, 6, 10, 29, 2, 11, 113, 10, 4, 13, 20, 2, 4, 4, 66, 31, 34, 29, 15, 2, 10, 3, 58, 49, 20, 10, 5, 8, 14, 6, 12, 12, 44, 5, 10
Offset: 1

Views

Author

Antti Karttunen, Dec 12 2021

Keywords

Crossrefs

Cf. also A326042, A350072.

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := NextPrime[p, -1]^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Dec 12 2021 *)
  • PARI
    A064989(n) = { my(f = factor(n)); for (i=1, #f~, f[i,1] = if(2==f[i, 1],1,precprime(f[i, 1]-1))); factorback(f); };
    A350073(n) = A064989(sigma(n));

Formula

Multiplicative with a(p^e) = A064989(1 + p + p^2 + ... + p^e).
a(n) = A064989(A000203(n)) = A064989(A161942(n)).

A337344 Odd numbers k such that A064989(sigma(k)) >= k.

Original entry on oeis.org

1, 9, 25, 225, 289, 729, 1681, 2401, 2601, 3481, 5041, 6561, 7225, 7921, 10201, 15129, 15625, 17161, 18225, 19881, 21609, 27889, 28561, 29929, 31329, 35721, 42025, 45369, 59049, 60025, 62001, 65025, 71289, 83521, 85849, 87025, 88209, 91809, 114921, 123201, 126025, 130321, 140625, 146689, 154449, 164025, 172225
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2020

Keywords

Comments

Applying A064989 to these terms and sorting into ascending order gives A326182.
Conversely, this sequence is obtained when the sequence b(n) = A003961(A326182(n)) is sorted into ascending order.
Not all terms are squares. For example, 12121028325 = A003961(A326183(1)) = 3^6 * 5^2 * 7^4 * 277 is also term, and this is true for all terms of A326183 similarly prime shifted. Interestingly, for n = 1..24, A003961(A326183(n)) is a term of A228058.

Crossrefs

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    isA337344(n) = ((n%2)&&(A064989(sigma(n))>=n));
Showing 1-2 of 2 results.