cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A337372 Primitively primeshift-abundant numbers: Numbers that are included in A246282 (k with A003961(k) > 2k), but none of whose proper divisors are.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 35, 39, 49, 57, 69, 91, 125, 242, 275, 286, 325, 338, 363, 418, 425, 442, 475, 494, 506, 561, 575, 598, 646, 682, 715, 722, 725, 754, 775, 782, 806, 845, 847, 867, 874, 925, 957, 962, 1023, 1025, 1045, 1054, 1058, 1066, 1075, 1105, 1118, 1175, 1178, 1221, 1222, 1235, 1265, 1309, 1325, 1334, 1353
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2020

Keywords

Comments

Numbers k whose only divisor in A246282 is k itself, i.e., A003961(k) > 2k, but for none of the proper divisors d|k, dA003961(d) > 2d.
Question: Do the odd terms in A326134 all occur here? Answer is yes, if the following conjecture holds: This is a subsequence of A263837, nonabundant numbers. In other words, we claim that any abundant number k (A005101) has A337345(k) > 1 and thus is a term of A341610. (The conjecture indeed holds. See the proof below).
From Antti Karttunen, Dec 06 2024: (Start)
Observation 1: The thirteen initial terms (4, 6, 9, ..., 69, 91) are only semiprimes in A246282, all other semiprimes being in A246281 (but none in A341610), and there seems to be only 678 terms m with A001222(m) = 3, from a(14) = 125 to the last one of them, a(2691) = 519963. There are more than 150000 terms m with A001222(m) = 4. In general, there should be only a finite number of terms m for any given k = A001222(m). Compare for example with A287728.
Observation 2: The intersection with A005101 (and thus also with A091191) is empty, which then implies the claims made in the sequences A378662, A378664, from which further follows that there are no 1's present in any of these sequences: A378658, A378736, A378740.
(End)
Proof of the latter observation by Jianing Song, Dec 11 2024: (Start)
Let's write p' for the next prime after the prime p. Also, write Q(n) = A003961(n)/sigma(n) which is multiplicative.
Proposition: For n > 1 not being a prime nor twice a prime, n has a factor p such that Q(n) > p'/p.
This implies that if n is abundant [including any primitively abundant n in A091191], then n has a factor p such that A003961(n/p)/(n/p) = (A003961(n)/n)/(p'/p) > sigma(n)/n [which is > 2 because n is abundant], so n/p is in A246282, meaning that n cannot be in this sequence.
Proof. We see that 1 <= Q(p) <= Q(p^2) <= ..., which implies that if n verifies the proposition, then every multiple of n also verifies it. Since n = p^2 > 4 and n = 8 verify the proposition, it suffices to consider the case where n = pq is the product of two distinct odd primes. Suppose WLOG that p < q, so q >= p', then using q/(q+1) >= p'/(p'+1) we have
Q(n) = p'q'/((p+1)(q+1)) >= p'^2*q'/(q(p+1)(p'+1)) > (p'^2-1)*q'/(q(p+1)(p'+1)) = (p'-1)/(p+1) * q'/q >= q'/q.
(End)

Examples

			14 = 2*7 is in the sequence as setting every prime to the next larger prime gives 3*11 = 33 > 28 = 2*14. Doing so for any proper divisor d of 14 gives a number < 2 * d. - _David A. Corneth_, Dec 07 2024
		

Crossrefs

Setwise difference A246282 \ A341610.
Positions of ones in A337345 and in A341609 (characteristic function).
Subsequence of A263837 and thus also of A341614.
Cf. also A005101, A091191, A326134.
Cf. also A337543.

Programs

  • Mathematica
    Block[{a = {}, b = {}}, Do[If[2 i < Times @@ Map[#1^#2 & @@ # &, FactorInteger[i] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[i == 1], AppendTo[a, i]; If[IntersectingQ[Most@ Divisors[i], a], AppendTo[b, i]]], {i, 1400}]; Complement[a, b]] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A252742(n) = (A003961(n) > (2*n));
    A337346(n) = sumdiv(n,d,(dA252742(d));
    isA337372(n) = ((1==A252742(n))&&(0==A337346(n)));
    
  • PARI
    is_A337372 = A341609;
    
  • PARI
    \\ See Corneth link

Formula

{k: 1==A337345(k)}.

A337345 Number of divisors d of n for which A003961(d) > 2*d, where A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 3, 0, 1, 1, 3, 0, 3, 0, 3, 1, 0, 0, 5, 0, 0, 2, 3, 0, 4, 0, 4, 0, 0, 1, 6, 0, 0, 1, 5, 0, 4, 0, 2, 3, 0, 0, 7, 1, 2, 0, 2, 0, 5, 0, 5, 1, 0, 0, 8, 0, 0, 3, 5, 0, 2, 0, 2, 1, 4, 0, 9, 0, 0, 2, 2, 0, 3, 0, 7, 3, 0, 0, 8, 0, 0, 0, 4, 0, 8, 1, 2, 0, 0, 0, 9, 0, 3, 2, 5, 0, 2, 0, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2020

Keywords

Comments

Number of terms of A246282 that divide n.
Number of divisors d of n for which A048673(d) > d.

Crossrefs

Inverse Möbius transform of A252742.
Cf. A003961, A048673, A246282, A337346, A337372 (positions of ones), A341609 (their characteristic function), A341610 (positions of terms > 1), A378658 [= a(A091191(n))], A378662, A378663.
Cf. also A080224, A337541, A341620.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A337345(n) = sumdiv(n,d,A003961(d)>(d+d));

Formula

a(n) = Sum_{d|n} A252742(d).
a(n) = A337346(n) + A252742(n).
From Antti Karttunen, Dec 10 2024: (Start)
a(n) = 1 <=> A341609(n) = 1.
a(n) = A378662(n) + A080224(n) = A378663(n) + A341620(n).
(End)

A341610 Nonprimitive terms of A246282: numbers k that have more than one divisor d|k such that A003961(d) > 2*d.

Original entry on oeis.org

8, 12, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 126, 128, 130, 132, 135, 136, 138, 140, 144, 147, 148, 150, 152, 153, 154, 156, 160, 162, 164, 165
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2021

Keywords

Comments

Numbers k for which A337345(k) > 1, or equally, for which A337346(k) > 0.
Obviously A337346(n) = 0 for any noncomposite and for any semiprime, thus this is a subsequence of A033942. The first term of A033942 not present here is 125, as A337345(125) = 1.
Empirically checked: in range 1 .. 2^31, all abundant numbers are found in this sequence. For proving this, we should concentrate only on checking A091191, as the set A005101 \ A091191 (non-primitive abundant numbers) is certainly included, as for any divisor d for which sigma(d) > 2*d (or even sigma(d) >= 2*d), we also have A003961(d) > 2*d.

Crossrefs

Cf. A337345.
Positions of nonzero terms in A337346.
Setwise difference A246282 \ A337372.
Conjectured subsequence: A005101. (Clearly abundant numbers are all in A246282).
Differs from its subsequence A033942 for the first time at n=52, with a(52) = 126, while A033942(52) = 125.

Programs

  • Mathematica
    Block[{nn = 165, s}, s = {1}~Join~Array[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] &, nn - 1, 2]; Select[Range[nn], 1 < DivisorSum[#, 1 &, s[[#]] > 2 # &] &]] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA341610(n) = (1A003961(d)>(d+d)));

A337542 Number of proper divisors d of n for which sigma(A003961(d)) >= 2*sigma(d), where sigma is the sum of divisors, and A003961(x) shifts the prime factorization of x one step towards larger primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 0, 2, 0, 3, 0, 0, 2, 0, 0, 5, 0, 0, 0, 0, 0, 4, 0, 3, 0, 0, 0, 5, 0, 0, 2, 3, 0, 1, 0, 0, 0, 2, 0, 7, 0, 0, 1, 0, 0, 1, 0, 4, 2, 0, 0, 6, 0, 0, 0, 2, 0, 6, 0, 0, 0, 0, 0, 7, 0, 2, 1, 2, 0, 1, 0, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2020

Keywords

Comments

Number of terms of A337381 less than n that divide n.

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A337542(n) = sumdiv(n,d,(dA003961(d))>=2*sigma(d));

Formula

a(n) = Sum_{d|n, dA337383(d).
a(n) = A337541(n) - A337383(n).

A341611 Nonabundant numbers that are not primitive terms of A246282.

Original entry on oeis.org

8, 16, 27, 28, 32, 44, 45, 50, 52, 63, 64, 68, 75, 76, 81, 92, 98, 99, 105, 110, 116, 117, 124, 128, 130, 135, 136, 147, 148, 152, 153, 154, 164, 165, 170, 171, 172, 175, 182, 184, 188, 189, 190, 195, 207, 212, 225, 230, 231, 232, 236, 238, 243, 244, 245, 248, 250, 255, 256, 261, 266, 268, 273, 279, 284, 285, 290, 292, 296, 297
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2021

Keywords

Comments

Terms k of A263837 for which A337345(k) > 1 (or equally, for which A337346(k) > 0).
Numbers k such that sigma(k) <= 2k and k has at least two distinct divisors d such that 2d < A003961(d). By necessity, one of these divisors is then k itself.

Crossrefs

Intersection of A341610 and A263837. Subsequence of A341614.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A337345(n) = sumdiv(n,d,A003961(d)>(d+d));
    isA341611(n) = ((sigma(n)<=(2*n))&&(1<A337345(n)));
Showing 1-5 of 5 results.