cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A246282 Numbers k for which A003961(k) > 2*k; numbers n such that if n = Product_{k >= 1} (p_k)^(c_k), then Product_{k >= 1} (p_{k+1})^(c_k) > 2*n, where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 27, 28, 30, 32, 35, 36, 39, 40, 42, 44, 45, 48, 49, 50, 52, 54, 56, 57, 60, 63, 64, 66, 68, 69, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 91, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 125, 126, 128, 130, 132, 135, 136, 138, 140, 144
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Numbers n such that A003961(n) > 2*n.
Numbers n such that A048673(n) > n.
The sequence grows as:
a(10) = 18
a(100) = 192
a(1000) = 1830
a(10000) = 18636
a(100000) = 187350
a(1000000) = 1865226
a(10000000) = 18654333
and the powers of 10 occur at:
a(5) = 10
a(53) = 100
a(536) = 1000
a(5423) = 10000
a(53290) = 100000
a(535797) = 1000000
a(5361886) = 10000000
suggesting that the ratio a(n)/n is converging to an constant and an arbitrary natural number is slightly more likely to be in this sequence than in the complement A246281. See also comments at A246351 and compare to quite a different ratio present in the "inverse" case A246362.
From Antti Karttunen, Aug 27 2020: (Start)
Any perfect number, including all odd perfect numbers (if such numbers exist), must occur in this sequence. See A286385 and A326042 for the reason why.
Like abundancy index (ratio A000203(n)/n), also ratio A003961(n)/n is multiplicative and always > 1 for all n > 1. Thus if the number has a proper divisor that is in this sequence, then the number itself also is. See A337372 for terms included here, but with no proper divisor in this sequence. (End)
For k >= 2, if m * A130789(k) is a term then m * A130789(k-1) is a term. - Peter Munn, Sep 01 2025
Could be called "primeshift-abundant numbers", in analogy with A005101. - Antti Karttunen, Sep 01 2025

Examples

			3 = p_2 (3 is the second prime, A000040(2)) is not a member, because p_3 = 5 (5 is the next prime after 3, A000040(3)) and 5/3 < 2.
4 = 2*2 = p_1 * p_1 is a member, as p_2 * p_2 = 3*3 = 9, and 9/4 > 2.
33 = 3*11 = p_2 * p_5 is not a member, as p_3 * p_6 = 5*13 = 65, and 65/33 < 2.
35 = 5*7 = p_3 * p_4 is a member, as p_4 * p_5 = 7*11 = 77, and 77/35 > 2.
		

Crossrefs

Complement: A246281.
Setwise difference of A246352 and A048674.
Cf. A000040, A003961, A048673, A130789, A246362, A252742 (characteristic function), A286385, A326042, A337345.
Positions of positive terms in A252748 and in A337345.
Union of A337372 (primitive terms), A341610 (non-primitive terms).
Cf. also A275717, A275718.

Programs

  • Mathematica
    Select[Range[144], 2 # < Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    isA246282(n) = (A003961(n) > (n+n));
    n = 0; i = 0; while(i < 10000, n++; if(isA246282(n), i++; write("b246282.txt", i, " ", n)));
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A246282 (MATCHING-POS 1 1 (lambda (n) (> (A003961 n) (* 2 n)))))
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A246282 (MATCHING-POS 1 1 (lambda (n) (> (A048673 n) n))))

Extensions

A new shorter version of name prepended by Antti Karttunen, Aug 27 2020

A341614 Numbers k such that sigma(k) <= 2k < A003961(k).

Original entry on oeis.org

4, 6, 8, 9, 10, 14, 15, 16, 21, 27, 28, 32, 35, 39, 44, 45, 49, 50, 52, 57, 63, 64, 68, 69, 75, 76, 81, 91, 92, 98, 99, 105, 110, 116, 117, 124, 125, 128, 130, 135, 136, 147, 148, 152, 153, 154, 164, 165, 170, 171, 172, 175, 182, 184, 188, 189, 190, 195, 207, 212, 225, 230, 231, 232, 236, 238, 242, 243, 244, 245, 248, 250, 255, 256
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2021

Keywords

Crossrefs

Intersection of A263837 and A246282 (nonabundant numbers in A246282).
Union of A000396 and A341615.
Union of A337372 and A341611 (see also A341610).
Cf. A341612 (characteristic function), A326134 (a subsequence).
Cf. also A378662, A378664.

Programs

  • Mathematica
    Select[Range[256], DivisorSigma[1, #] <= 2 # <
    Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] &] (* Michael De Vlieger, Feb 22 2021 *)

A326134 Numbers k such that A326057(k) is equal to A252748(k) and A252748(k) is not 1.

Original entry on oeis.org

6, 28, 69, 91, 496, 2211, 4825, 8128, 12639, 22799825, 33550336, 60406599, 68258725, 569173299, 794579511, 984210266, 2830283326, 8589869056, 10759889913, 80295059913, 85871289682
Offset: 1

Views

Author

Antti Karttunen, Jun 11 2019

Keywords

Comments

No other terms below 3221225472.
Numbers k such that A252748(k) [= A003961(k) - 2*k] <> 1 (i.e., k is not in A348514), and A286385(k) [= A003961(k) - A000203(k)] = m*A252748(k) for some positive integer m. Note that this entails that k is nonabundant (A000203(k) <= 2*k) and primeshift-abundant (A252748(k) > 2), thus this is a subsequence of A341614. - revised Dec 13 2024
This is a subsequence of A378980, see further comments there. - Antti Karttunen, Dec 13 2024

Examples

			28 is a term as A252748(28) = 43 > 1 and A286385(28) = 43, which is a multiple of 43.
69 is a term as A252748(69) = 7 > 1 and A286385(69) = 49 is a multiple of 7.
91 is a term as A252748(91) = 5 > 1 and A286385(91) = 75 is a multiple of 5.
		

Crossrefs

Subsequence of the following sequences: A246282, A341614, A378980.
Odd terms form a subsequence of A349753.

Programs

  • Mathematica
    Select[Range[10^5], And[#3 - #1 != 1, GCD[#3 - #1, #3 - #2] == #3 - #1] & @@ {2 #, DivisorSigma[1, #], Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1]} &] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    isA326134(n) = { my(s = A003961(n), t = (s-(2*n)), u = s-sigma(n)); ((1!=t)&&!(u%t)&&((u/t)>0)); };

Extensions

a(18) from Antti Karttunen, Dec 14 2024
a(19)..a(21) from Antti Karttunen (from the b-file of A378980 computed by Amiram Eldar), Dec 20 2024

A341610 Nonprimitive terms of A246282: numbers k that have more than one divisor d|k such that A003961(d) > 2*d.

Original entry on oeis.org

8, 12, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 126, 128, 130, 132, 135, 136, 138, 140, 144, 147, 148, 150, 152, 153, 154, 156, 160, 162, 164, 165
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2021

Keywords

Comments

Numbers k for which A337345(k) > 1, or equally, for which A337346(k) > 0.
Obviously A337346(n) = 0 for any noncomposite and for any semiprime, thus this is a subsequence of A033942. The first term of A033942 not present here is 125, as A337345(125) = 1.
Empirically checked: in range 1 .. 2^31, all abundant numbers are found in this sequence. For proving this, we should concentrate only on checking A091191, as the set A005101 \ A091191 (non-primitive abundant numbers) is certainly included, as for any divisor d for which sigma(d) > 2*d (or even sigma(d) >= 2*d), we also have A003961(d) > 2*d.

Crossrefs

Cf. A337345.
Positions of nonzero terms in A337346.
Setwise difference A246282 \ A337372.
Conjectured subsequence: A005101. (Clearly abundant numbers are all in A246282).
Differs from its subsequence A033942 for the first time at n=52, with a(52) = 126, while A033942(52) = 125.

Programs

  • Mathematica
    Block[{nn = 165, s}, s = {1}~Join~Array[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] &, nn - 1, 2]; Select[Range[nn], 1 < DivisorSum[#, 1 &, s[[#]] > 2 # &] &]] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA341610(n) = (1A003961(d)>(d+d)));
Showing 1-4 of 4 results.