cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337360 a(n) = sigma(n) * (tau(n) + 1).

Original entry on oeis.org

2, 9, 12, 28, 18, 60, 24, 75, 52, 90, 36, 196, 42, 120, 120, 186, 54, 273, 60, 294, 160, 180, 72, 540, 124, 210, 200, 392, 90, 648, 96, 441, 240, 270, 240, 910, 114, 300, 280, 810, 126, 864, 132, 588, 546, 360, 144, 1364, 228, 651, 360, 686, 162, 1080, 360, 1080, 400, 450, 180, 2184
Offset: 1

Views

Author

Wesley Ivan Hurt, Aug 24 2020

Keywords

Comments

Original name was: Sum of the coordinates of all pairs of divisors of n, (d1,d2), such that d1 <= d2.
2*a(n) is the sum of the perimeters of all distinct rectangles that can be made whose side lengths are divisors of n.
Every divisor of n occurs tau(n) + 1 times in the coordinates of divisors of n. - David A. Corneth, Aug 25 2020

Examples

			a(3) = 12; The divisors of 3 are {1,3}. The divisor pairs, (d1,d2), where d1 <= d2 are (1,1), (1,3) and (3,3). The sum of all the coordinates is then 1+1+1+3+3+3 = 12. So a(3) = 12.
a(4) = 28; The divisors of 4 are {1,2,4}. The divisor pairs, (d1,d2), where d1 <= d2 are (1,1), (1,2), (1,4), (2,2), (2,4) and (4,4). The sum of all the coordinates is then 1+1+1+2+1+4+2+2+2+4+4+4 = 28. So a(4) = 28.
a(5) = 18; The divisors of 5 are {1,5}. The divisor pairs, (d1,d2), where d1 <= d2 are (1,1), (1,5) and (5,5). The sum of all the coordinates is then 1+1+1+5+5+5 = 18. So a(5) = 18.
a(6) = 60; The divisors of 6 are {1,2,3,6}. The divisor pairs, (d1,d2), where d1 <= d2 are (1,1), (1,2), (1,3), (1,6), (2,2), (2,3), (2,6), (3,3), (3,6), (6,6). The sum of all the coordinates is then 1+1+1+2+1+3+1+6+2+2+2+3+2+6+3+3+3+6+6+6 = 60. So a(6) = 60.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma).

Programs

  • Mathematica
    Table[Sum[Sum[(i + k) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, n}], {n, 80}]
  • PARI
    a(n) = sigma(n) * (numdiv(n)+1) \\ David A. Corneth, Aug 25 2020
    
  • Python
    from sympy import divisor_sigma
    def A337360(n): return (divisor_sigma(n,0)+1)*divisor_sigma(n) # Chai Wah Wu, Aug 07 2025

Formula

a(n) = Sum_{d1|n, d2|n, d1<=d2} (d1+d2).
a(p^k) = (p^(k+1)-1)*(k+2)/(p-1) for p prime and k >= 1. - Wesley Ivan Hurt, Aug 23 2025

Extensions

New name using formula from David A. Corneth_, Aug 25 2020