cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A337425 a(n) is the least prime of the form (3^j*5^k + 1)/2, j > 0, k > 0, j + k = n. a(n) = 0 if no such prime exists.

Original entry on oeis.org

0, 23, 113, 563, 1013, 1823, 70313, 351563, 82013, 410063, 43945313, 1328603, 18452813, 1977539063, 0, 830376563, 538084013, 968551223, 13452100313, 1441625976563, 43584805013, 2145767211914063, 0, 0, 9806581127813, 6354664570823, 681012578320313, 441296150751563, 0
Offset: 2

Views

Author

Hugo Pfoertner, Aug 27 2020

Keywords

Crossrefs

A337424 Sums s of positive exponents such that no prime of the form (3^j*5^k - 1)/2 with j + k = s exists.

Original entry on oeis.org

12, 19, 20, 23, 26, 33, 34, 35, 40, 41, 48, 51, 52, 54, 63, 68, 69, 74, 75, 78, 83, 87, 93, 97, 101, 103, 105, 114, 116, 123, 132, 135, 138, 141, 142, 144, 147, 152, 154, 159, 165, 170, 172, 173, 179, 180, 186, 187, 189, 192, 194, 202, 203, 210, 215, 216, 217, 218, 221
Offset: 1

Views

Author

Hugo Pfoertner, Aug 27 2020

Keywords

Crossrefs

Positions of 0 in A337423.

A337427 a(n) is the least prime of the form (3^r*5^s*7^t - 1)/2, r, s, t > 0, r + s + t = n.

Original entry on oeis.org

157, 787, 3307, 19687, 12757, 347287, 267907, 3125587, 2870437, 5166787, 25833937, 590736037, 232505437, 2712563437, 13562817187, 3766588087, 52313723437, 726579492187, 332213069317, 847482319687, 4237411598437, 115351760179687, 88985643567187, 68646067894687
Offset: 4

Views

Author

Hugo Pfoertner, Aug 29 2020

Keywords

Examples

			For exponent sum n = 3 no prime exists, (3*5*7-1)/2 = 52 is composite.
a(4) = 157: (3^2*5*7-1)/2 is the least prime with exponent sum n = 4.
a(5) = 787: there are 6 ways to choose the exponents of 3, 5, 7 with sum n = 5, i.e., [3,1,1], [1,3,1], [1,1,3], [2,2,1], [2,1,2], [1,2,2]. (3^3*5*7-1)/2 = 472 is composite, but (3^2*5^2*7-1)/2 = 787 is prime.
		

Crossrefs

Programs

  • Mathematica
    Table[Min[Select[(3^#[[1]] 5^#[[2]] 7^#[[3]]-1)/2&/@Flatten[Permutations/@ IntegerPartitions[n,{3}],1],PrimeQ]],{n,30}]/.\[Infinity]->Nothing (* Harvey P. Dale, Oct 29 2020 *)
  • PARI
    seqpp(np0,np,add,lim) = {for(m=np0,lim, my(pmin=oo); forpart(V=m, forperm(np,P, my(p=(prod(k=1,np,prime(k+1)^V[P[k]])+add)/2); if(isprime(p), pmin=min(pmin,p))), [1,m-np+1],[np,np]); print1(pmin,", "))};
    seqpp(4,3,-1,27)

A337428 a(n) is the least prime of the form (3^r*5^s*7^t + 1)/2, r, s, t > 0, r + s + t = n.

Original entry on oeis.org

53, 263, 1103, 6563, 4253, 49613, 38273, 1041863, 344453, 60775313, 109395563, 119601563, 151903553, 325507613, 3797588813, 202622460863, 17437907813, 11299764263, 20339575673, 282494106563, 1186475247563, 5932376237813, 29661881189063, 8237528147363, 14827550665253
Offset: 3

Views

Author

Hugo Pfoertner, Aug 29 2020

Keywords

Examples

			a(3) = 53: (3*5*7+1)/2 = 106/2 is prime.
a(4) = 263: The first choice of exponents leads to the composite (3^2*5*7+1)/2 = 158, but the next choice (3*5^2*7+1)/2 = 526/2 is prime.
		

Crossrefs

Programs

  • PARI
    seqpp (3,3,1,27) \\ using function seqpp defined in A337427
Showing 1-4 of 4 results.