cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A308681 E.g.f.: (sec(x) - tan(x)) / sqrt(1 - 2*x).

Original entry on oeis.org

1, 0, 2, 7, 60, 519, 5890, 76637, 1158808, 19770383, 377036646, 7939301349, 183033429524, 4584731740471, 123994410402122, 3601004174824573, 111771076844177328, 3692510526181175583, 129364120799128910158, 4790645026641043053269, 186981399898552187792620
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 15 2021

Keywords

Comments

Inverse boustrophedon transform of A001147.

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(Sec[x] - Tan[x])/Sqrt[1 - 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    t[n_, 0] := (2 n - 1)!!; t[n_, k_] := t[n, k] = t[n, k - 1] - t[n - 1, n - k]; a[n_] := t[n, n]; Table[a[n], {n, 0, 20}]
  • Python
    from itertools import count, islice, accumulate
    from operator import sub
    def A308681_gen(): # generator of terms
        blist, m = tuple(), 1
        for i in count(1):
            yield (blist := tuple(accumulate(reversed(blist),func=sub,initial=m)))[-1]
            m *= (2*i-1)
    A308681_list = list(islice(A308681_gen(),30)) # Chai Wah Wu, Jun 11 2022

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A001147(k) * A000111(n-k).
a(n) ~ (1 - sin(1/2)) * 2^(n + 1/2) * n^n / (cos(1/2) * exp(n)). - Vaclav Kotesovec, Aug 23 2021

A347071 E.g.f.: exp(x) * (sec(x) - tan(x)) / (1 - x).

Original entry on oeis.org

1, 1, 2, 5, 20, 95, 580, 3999, 32272, 288783, 2898300, 31807679, 382253808, 4964649079, 69546528636, 1042802172359, 16688865840384, 283667092507743, 5106507590277564, 97017597229232975, 1940428937186428720, 40747978365579886375, 896469940257304900700
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 15 2021

Keywords

Comments

Inverse boustrophedon transform of A000522.
Binomial transform of A337445.

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[x] (Sec[x] - Tan[x])/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
    t[n_, 0] := n! Sum[1/k!, {k, 0, n}]; t[n_, k_] := t[n, k] = t[n, k - 1] - t[n - 1, n - k]; a[n_] := t[n, n]; Table[a[n], {n, 0, 22}]
  • Python
    from itertools import count, islice, accumulate
    from operator import sub
    def A347071_gen(): # generator of terms
        blist, m = tuple(), 1
        for i in count(1):
            yield (blist := tuple(accumulate(reversed(blist),func=sub,initial=m)))[-1]
            m = m*i + 1
    A347071_list = list(islice(A347071_gen(),30)) # Chai Wah Wu, Jun 11 2022

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A000522(k) * A000111(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * A337445(k).
a(n) ~ n! * exp(1)*(1 - sin(1))/cos(1). - Vaclav Kotesovec, Aug 23 2021
Showing 1-2 of 2 results.