cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A226775 Decimal expansion of the number x other than -2 defined by x*exp(x) = -2/e^2.

Original entry on oeis.org

4, 0, 6, 3, 7, 5, 7, 3, 9, 9, 5, 9, 9, 5, 9, 9, 0, 7, 6, 7, 6, 9, 5, 8, 1, 2, 4, 1, 2, 4, 8, 3, 9, 7, 5, 8, 2, 1, 0, 9, 9, 7, 5, 7, 5, 1, 8, 1, 1, 4, 0, 6, 3, 5, 0, 0, 0, 4, 9, 5, 4, 8, 8, 3, 0, 3, 9, 1, 5, 0, 1, 5, 1, 8, 3, 8, 1, 2, 0, 4, 9, 7, 6, 7, 2, 5, 0, 0, 7, 2, 3, 3, 8, 1, 5, 5, 9, 2, 8, 5, 8, 2, 9, 3, 8
Offset: 0

Views

Author

Keywords

Examples

			-0.4063757399599599076769581241248397582109975751811406350004954883....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[ProductLog[-2/E^2], 105]][[1]] (* corrected by Vaclav Kotesovec, Feb 21 2014 *)
  • PARI
    solve(x=-1, x=0, x*exp(x) + 2*exp(-2)) \\ G. C. Greubel, Nov 15 2017

Formula

Equals -2*A106533.
Equals LambertW(-2*exp(-2)).

A337457 O.g.f. A(x) satisfies: [x^n] exp( n*(n-1) * x/A(x) ) = 0 for n > 0.

Original entry on oeis.org

1, 1, 1, 7, 93, 1859, 49357, 1629227, 64149805, 2929386667, 152027131261, 8830653890299, 567303319553421, 39924294419453931, 3053895154472856285, 252244319795920299419, 22373037117819632459821, 2120745476831765696381387, 213946972632171665440620925, 22887117259538879173402222075
Offset: 0

Views

Author

Paul D. Hanna, Aug 28 2020

Keywords

Comments

It is remarkable that this sequence consists entirely of integers.

Examples

			O.g.f.: A(x) = 1 + x + x^2 + 7*x^3 + 93*x^4 + 1859*x^5 + 49357*x^6 + 1629227*x^7 + 64149805*x^8 + 2929386667*x^9 + 152027131261*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp( n*(n-1)*x/A(x) ) begins:
n=0: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...];
n=1: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...];
n=2: [1, 2, 0, -16, -320, -21888, -2648576, -494325760, ...];
n=3: [1, 6, 24, 0, -1728, -88704, -9621504, -1715198976, ...];
n=4: [1, 12, 120, 864, 0, -281088, -26873856, -4328017920, ...];
n=5: [1, 20, 360, 5600, 65920, 0, -66944000, -10207436800, ...];
n=6: [1, 30, 840, 21600, 492480, 8784000, 0, -22098355200, ...];
n=7: [1, 42, 1680, 63504, 2237760, 71229312, 1814690304, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n*(n-1)*x/A(x) ) = 0 for n>0.
RELATED SERIES.
Define B(x) = A(x*B(x)), which begins
B(x) = 1 + x + 2*x^2 + 11*x^3 + 130*x^4 + 2450*x^5 + 63012*x^6 + 2040779*x^7 + 79377914*x^8 + 3594766694*x^9 + ... + A337458(n)*x^n + ...
then the table of coefficients of x^k/k! in exp(n*(n+1)*x) / B(x)^(n+1) begins:
n=0: [1, -1, -2, -48, -2616, -262080, -41718240, -9630270720, ...];
n=1: [1, 0, -6, -112, -5592, -547968, -86345120, -19809990912, ...];
n=2: [1, 3, 0, -222, -10728, -958824, -144971712, -32519314080, ...];
n=3: [1, 8, 52, 0, -18648, -1693248, -236690784, -50727983616, ...];
n=4: [1, 15, 210, 2420, 0, -2739720, -399251600, -80125144800, ...];
n=5: [1, 24, 558, 12192, 221184, 0, -616918320, -131299591680, ...];
n=6: [1, 35, 1204, 40278, 1272768, 33597312, 0, -196436730672, ...];
n=7: [1, 48, 2280, 106688, 4869552, 210771456, 7654459648, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n*(n+1)*x ) / B(x)^(n+1) = 0 for n>0.
Also note that B(x) = (1/x)*Series_Reversion( x/A(x) ) and A(x) = B(x/A(x)).
		

Crossrefs

Cf. A337458.

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(m*(m-1)*x/Ser(A) ))[m+1]/(m*(m-1)) );A[n+1]}
    for(n=0, 20, print1(a(n), ", "))

Formula

Given o.g.f. A(x), define B(x) = A(x*B(x)), then B(x) is the o.g.f. of A337458 and satisfies [x^n] exp( n*(n+1)*x ) / B(x)^(n+1) = 0 for n>0.
a(n) ~ c * d^n * n! / n^2, where d = -4 / (LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) = 6.17655460948348035823168... and c = 0.083103344220475784... - Vaclav Kotesovec, Aug 31 2020

A337576 O.g.f. A(x) satisfies: [x^n] exp( n^2*(n+1) * x ) / A(x)^(n+1) = 0 for n > 0.

Original entry on oeis.org

1, 1, 14, 947, 157190, 47437866, 22437363324, 15246207565643, 14053536511674526, 16868801353366004990, 25566893078760354005252, 47761059837097334197007118, 107843046053558916525978556156, 289613430019820775682179202404084
Offset: 0

Views

Author

Paul D. Hanna, Sep 02 2020

Keywords

Comments

It is remarkable that this sequence consists entirely of integers.

Examples

			O.g.f.: A(x) = 1 + x + 14*x^2 + 947*x^3 + 157190*x^4 + 47437866*x^5 + 22437363324*x^6 + 15246207565643*x^7 + 14053536511674526*x^8 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp( n^2*(n+1)*x ) / A(x)^(n+1) begins:
n=0: [1, -1, -26, -5520, -3723384, -5652041280, -16083171669600, ...];
n=1: [1, 0, -54, -11200, -7486872, -11338403328, -32230618603040, ...];
n=2: [1, 9, 0, -18258, -11861352, -17522277048, -49272492906432, ...];
n=3: [1, 32, 916, 0, -17438424, -25288921344, -69043257103968, ...];
n=4: [1, 75, 5490, 363500, 0, -35101453320, -94993441197200, ...];
n=5: [1, 144, 20574, 2882400, 368064576, 0, -127110906431280, ...];
n=6: [1, 245, 59836, 14528010, 3470388768, 759773089152, 0, ...];
n=7: [1, 384, 147240, 56329472, 21453513648, 8058471570432, 2785824326725888, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^2*(n+1)*x ) / A(x)^(n+1) = 0 for n>0.
RELATED SERIES.
Define B(x) = A(x/B(x)), which begins
B(x) = 1 + x + 13*x^2 + 907*x^3 + 153145*x^4 + 46602295*x^5 + 22140651001*x^6 + 15084920403375*x^7 + ... + A337575(n)*x^n + ...
then the table of coefficients of x^k/k! in exp( n*(n-1)^2 * x/B(x) ) begins:
n=0: [1, 0, 0, 0, 0, 0, 0, 0, ...];
n=1: [1, 0, 0, 0, 0, 0, 0, 0, ...];
n=2: [1, 2, 0, -160, -43520, -36711168, -67072065536, ...];
n=3: [1, 12, 120, 0, -293760, -234067968, -415963247616, ...];
n=4: [1, 36, 1224, 36288, 0, -792405504, -1355831322624, ...];
n=5: [1, 80, 6240, 467840, 31356160, 0, -3403785728000, ...];
n=6: [1, 150, 22200, 3229200, 456364800, 58514400000, 0, ...];
n=7: [1, 252, 63000, 15603840, 3817860480, 913835768832, 200316485182464, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n*(n-1)^2 * x/B(x) ) = 0 for n>0.
Also note that B(x) = x/Series_Reversion( x*A(x) ) and A(x) = B(x*A(x)).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(m*(m-1)^2*x +x*O(x^m)) / Ser(A)^m )[m]/m);A[n+1]}
    for(n=0, 20, print1(a(n), ", "))

Formula

Given o.g.f. A(x), define B(x) = A(x/B(x)), then B(x) is the o.g.f. of A337575 and satisfies [x^n] exp( n*(n-1)^2 * x/B(x) ) = 0 for n>0.

A337578 O.g.f. A(x) satisfies: [x^n] exp( n*(n+1)^2 * x ) / A(x)^(n+1) = 0 for n > 0.

Original entry on oeis.org

1, 2, 26, 1756, 301140, 94035272, 45829458720, 31938032357440, 30067763435823664, 36733573872360057568, 56505395303074211175584, 106885908721218962904619840, 243929162811364027276490748288, 661085501644539366377254535077376
Offset: 0

Views

Author

Paul D. Hanna, Sep 02 2020

Keywords

Comments

It is remarkable that this sequence consists entirely of integers.

Examples

			O.g.f.: A(x) = 1 + 2*x + 26*x^2 + 1756*x^3 + 301140*x^4 + 94035272*x^5 + 45829458720*x^6 + 31938032357440*x^7 + 30067763435823664*x^8 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp( n*(n+1)^2*x ) / A(x)^(n+1) begins:
n=0: [1, -2, -44, -9960, -7049664, -11131647360, -32715852151680, ...];
n=1: [1, 0, -96, -20480, -14247072, -22395261696, -65687348011520, ...];
n=2: [1, 12, 0, -34176, -22928112, -34905615552, -100977330265344, ...];
n=3: [1, 40, 1408, 0, -34275648, -51114811392, -142803802229760, ...];
n=4: [1, 90, 7860, 613000, 0, -71887626240, -199085724252800, ...];
n=5: [1, 168, 27936, 4535040, 663960096, 0, -269327647065600, ...];
n=6: [1, 280, 78064, 21598080, 5858601168, 1443397611264, 0, ...];
n=7: [1, 432, 186240, 80041984, 34200321408, 14371727121408, 5514496883009536, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n*(n+1)^2*x ) / A(x)^(n+1) = 0 for n>0.
RELATED SERIES.
Define B(x) = A(x/B(x)), which begins
B(x) = 1 + 2*x + 22*x^2 + 1616*x^3 + 286700*x^4 + 90914400*x^5 + 44673096808*x^6 + 31286975152640*x^7 + ... + A337577(n)*x^n + ...
then the table of coefficients of x^k/k! in exp( n*(n-1)^2 * x/B(x) ) begins:
n=0: [1, 0, 0, 0, 0, 0, 0, ...];
n=1: [1, 0, 0, 0, 0, 0, 0, ...];
n=2: [1, 4, 0, -560, -154880, -137342976, -261610747904, ...];
n=3: [1, 18, 252, 0, -822960, -670328352, -1230620630976, ...];
n=4: [1, 48, 2112, 77760, 0, -2077949952, -3628874151936, ...];
n=5: [1, 100, 9600, 869200, 68473600, 0, -8724419840000, ...];
n=6: [1, 180, 31680, 5423760, 890714880, 130187520000, 0, ...];
n=7: [1, 294, 85260, 24343200, 6817260240, 1850897137824, 453595543361856, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n*(n-1)^2 * x/B(x) ) = 0 for n>0.
Also note that B(x) = x/Series_Reversion( x*A(x) ) and A(x) = B(x*A(x)).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(m^2*(m-1)*x +x*O(x^m)) / Ser(A)^m )[m]/m);A[n+1]}
    for(n=0, 20, print1(a(n), ", "))

Formula

Given o.g.f. A(x), define B(x) = A(x/B(x)), then B(x) is the o.g.f. of A337577 and satisfies [x^n] exp( n^2*(n-1) * x/B(x) ) = 0 for n>0.

A337579 O.g.f. A(x) satisfies: [x^n] exp( n*(n+1)^2 * x ) / A(x)^((n+1)^2) = 0 for n>0.

Original entry on oeis.org

1, 1, 5, 202, 25741, 6481768, 2661785172, 1606979708104, 1336018641201031, 1461946920710738032, 2036450966030220362632, 3519187269661662800713808, 7390652429852470066011519746, 18545709306030399397877283499248, 54823008100459892066683079355901888, 188621839026471088419358039473633535392
Offset: 0

Views

Author

Paul D. Hanna, Sep 01 2020

Keywords

Comments

It is remarkable that this sequence consists entirely of integers.

Examples

			O.g.f.: A(x) = 1 + x + 5*x^2 + 202*x^3 + 25741*x^4 + 6481768*x^5 + 2661785172*x^6 + 1606979708104*x^7 + 1336018641201031*x^8 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n*(n+1)^2*x) / A(x)^((n+1)^2) begins:
n=0: [1, -1, -8, -1158, -607824, -771471360, -1906996245120, ...];
n=1: [1, 0, -36, -4736, -2447112, -3096809856, -7645376634080, ...];
n=2: [1, 9, 0, -12114, -5911488, -7219467792, -17580593299968, ...];
n=3: [1, 32, 880, 0, -12002784, -14133084672, -33100636472064, ...];
n=4: [1, 75, 5400, 341650, 0, -25227867600, -57875848640000, ...];
n=5: [1, 144, 20412, 2803392, 343375416, 0, -95154559008480, ...];
n=6: [1, 245, 59584, 14323974, 3357877488, 709290480864, 0, ...];
n=7: [1, 384, 146880, 55883776, 21079051392, 7789007628288, 2612787154865152, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp(n*(n+1)^2*x) / A(x)^((n+1)^2) = 0 for n>0.
RELATED SERIES.
log(A(x)) = x + 9*x^2/2 + 592*x^3/3 + 102125*x^4/4 + 32276196*x^5/5 + 15931091190*x^6/6 + 11230009495552*x^7/7 + 10675195543084221*x^8/8 + ...
where [x^n] exp( (n+1)^2 * (n*x - log(A(x))) ) = 0 for n>0.
		

Crossrefs

Cf. A337458.

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = polcoeff( exp(m^2*(m-1)*x +x*O(x^m)) / Ser(A)^(m^2), m-1) /m^2 );A[n+1]}
    for(n=0, 20, print1(a(n), ", "))

A383559 O.g.f. A(x) satisfies: [x^n] exp( n*(2*n+1)*x ) / A(x) = 0 for n > 0.

Original entry on oeis.org

1, 3, 29, 609, 20857, 997671, 61114409, 4548317073, 397323349505, 39774233809179, 4483232458612245, 561425116837715457, 77289022946177141161, 11597365849594347661839, 1883429636306366952452433, 329083700898584984268782241, 61549497773760817234065857793, 12268604214374346472111552473267
Offset: 0

Views

Author

Paul D. Hanna, May 17 2025

Keywords

Examples

			O.g.f.: A(x) = 1 + 3*x + 29*x^2 + 609*x^3 + 20857*x^4 + 997671*x^5 + 61114409*x^6 + 4548317073*x^7 + 397323349505*x^8 + ...
RELATED TABLE.
The table of coefficients of x^k/k! in exp( n*(2*n+1)*x ) / A(x) begins
  n = 1: [1,  0,  -49,  -3186,  -445203, -109403892, -41045026725, ...];
  n = 2: [1,  7,    0,  -3872,  -546416, -126698400, -45990717440, ...];
  n = 3: [1, 18,  275,      0,  -664875, -160762914, -55439093817, ...];
  n = 4: [1, 33, 1040,  27900,        0, -196031664, -71849477952, ...];
  n = 5: [1, 52, 2655, 129778,  5408749,          0, -87799444565, ...];
  n = 6: [1, 75, 5576, 407664, 28585872, 1710760608,            0, ...];
  ...
illustrating [x^n] exp( n*(2*n+1)*x ) / A(x) = 0 for n > 0.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],m); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)*(2*m-1) +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
    for(n=0, 25, print1( a(n), ", "))

Formula

a(n) ~ sqrt(1-w) * 2^(3*n - 1/4) * n^(n - 1/2) / (sqrt(Pi) * exp(n) * (2-w)^n * w^(n + 1/4)), where w = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599... - Vaclav Kotesovec, May 18 2025
Showing 1-6 of 6 results.