cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337470 Square array read by falling antidiagonals, where A(n,k) = primorial inflation of k prime shifted n times with A003961.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 4, 15, 5, 1, 30, 9, 35, 7, 1, 12, 105, 25, 77, 11, 1, 210, 45, 385, 49, 143, 13, 1, 8, 1155, 175, 1001, 121, 221, 17, 1, 36, 27, 5005, 539, 2431, 169, 323, 19, 1, 60, 225, 125, 17017, 1573, 4199, 289, 437, 23, 1, 2310, 315, 1225, 343, 46189, 2873, 7429, 361, 667, 29, 1, 24, 15015, 1925, 5929, 1331, 96577, 5491, 12673, 529, 899, 31
Offset: 0

Views

Author

Antti Karttunen, Aug 28 2020

Keywords

Comments

Array is read by descending antidiagonals with n >= 0 and k >= 1 ranging as: (0, 1), (0, 2), (1, 1), (0, 3), (1, 2), (2, 1), (0, 4), (1, 3), (2, 2), (3, 1), ...

Examples

			The top left corner of the array begins as:
n/k | 1   2    3    4     5     6      7     8      9     10
----|------------------------------------------------------------
  0 | 1,  2,   6,   4,   30,   12,   210,    8,    36,    60, ...
  1 | 1,  3,  15,   9,  105,   45,  1155,   27,   225,   315, ...
  2 | 1,  5,  35,  25,  385,  175,  5005,  125,  1225,  1925, ...
  3 | 1,  7,  77,  49, 1001,  539, 17017,  343,  5929,  7007, ...
  4 | 1, 11, 143, 121, 2431, 1573, 46189, 1331, 20449, 26741, ...
  5 | 1, 13, 221, 169, 4199, 2873, 96577, 2197, 48841, 54587, ...
etc.
		

Crossrefs

Cf. A108951 (row 0), A337471 (row 1).
Cf. also A337205, A337472.

Programs

  • PARI
    up_to = 105-1; \\ Or 78-1.
    Ashifted_primorial(n,d) = prod(i=1, primepi(n), prime(i+d));
    A337470sq(n, k) = { my(f=factor(k)); prod(i=1, #f~, Ashifted_primorial(f[i, 1], n)^f[i, 2]); };
    A337470list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0, oo, for(b=1, a, i++; if(i > #v, return(v)); v[i] = A337470sq(b-1, (a-(b-1))))); (v); };
    v337470 = A337470list(up_to);
    A337470(n) = v337470[1+n];

Formula

A(n,k) = A242378(n,A108951(k)).