A337479 Primitive elements of A337386: numbers k for which sigma(A003961(k)) >= 2*A003961(k), but none of the proper divisors of k satisfy the same condition.
120, 180, 300, 420, 504, 630, 660, 780, 924, 990, 1020, 1050, 1092, 1140, 1170, 1380, 1470, 1650, 1740, 1860, 2220, 2310, 2460, 2580, 2730, 2820, 2856, 3168, 3180, 3192, 3432, 3540, 3570, 3660, 3864, 3990, 4020, 4260, 4284, 4290, 4380, 4488, 4590, 4740, 4752, 4788, 4830
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Mathematica
Block[{f}, f[1] = 1; f[n_] := Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}]; Select[Range[5000], And[DivisorSigma[1, Last[#]] >= 2 Last[#], NoneTrue[Most[#], DivisorSigma[1, #] >= 2 # &]] &@ Map[f, Divisors@ #] &] ] (* Michael De Vlieger, Oct 05 2020 *)
-
PARI
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; isA337386(n) = { my(x=A003961(n)); (sigma(x)>=2*x); }; isA337479(n) = (1==sumdiv(n,d,isA337386(d)));
Comments