cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337479 Primitive elements of A337386: numbers k for which sigma(A003961(k)) >= 2*A003961(k), but none of the proper divisors of k satisfy the same condition.

Original entry on oeis.org

120, 180, 300, 420, 504, 630, 660, 780, 924, 990, 1020, 1050, 1092, 1140, 1170, 1380, 1470, 1650, 1740, 1860, 2220, 2310, 2460, 2580, 2730, 2820, 2856, 3168, 3180, 3192, 3432, 3540, 3570, 3660, 3864, 3990, 4020, 4260, 4284, 4290, 4380, 4488, 4590, 4740, 4752, 4788, 4830
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2020

Keywords

Comments

Equivalently, numbers k such that A003961(k) is in A006039, i.e., numbers that become an (odd) primitive nondeficient number when prime-shifted once.
Conjecture: every positive integer is either a (possibly trivial) multiple of a sequence term or divides infinitely many terms of this sequence. - Peter Munn, Sep 24 2020

Crossrefs

Programs

  • Mathematica
    Block[{f}, f[1] = 1; f[n_] := Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}]; Select[Range[5000], And[DivisorSigma[1, Last[#]] >= 2 Last[#], NoneTrue[Most[#], DivisorSigma[1, #] >= 2 # &]] &@ Map[f, Divisors@ #] &] ] (* Michael De Vlieger, Oct 05 2020 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA337386(n) = { my(x=A003961(n)); (sigma(x)>=2*x); };
    isA337479(n) = (1==sumdiv(n,d,isA337386(d)));

Formula

For all n >= 1, A337690(a(n)) = A337539(n).