cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A337539 Number of primitive non-deficient numbers (A006039) dividing A337479(n).

Original entry on oeis.org

2, 2, 2, 4, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 6, 2
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Sep 20 2020

Keywords

Comments

The numbers in A337479 are those that become a primitive nondeficient number (term of A006039) when each of their prime factors is replaced by the next larger prime number.

Examples

			Table of n, A337479(n), a(n) and the relevant divisors starts:
   n   A337479(n)  a(n)  divisors in A006039
   1      120       2     6, 20;
   2      180       2     6, 20;
   3      300       2     6, 20;
   4      420       4     6, 20, 28, 70;
   5      504       2     6, 28;
   6      630       2     6, 70;
   7      660       2     6, 20;
   8      780       2     6, 20;
   9      924       2     6, 28;
  10      990       1     6;
  11     1020       2     6, 20;
  12     1050       2     6, 70;
		

Crossrefs

A006039, A337479 are used to define this sequence.
See A000203 and A023196 for definitions of deficient and nondeficient.
Subsequence of A337690.
Cf. A337386.

Programs

  • PARI
    isA071395(n) = if(sigma(n) <= 2*n, 0, fordiv(n, d, if((d != n)&&(sigma(d) >= 2*d), return(0))); (1)); \\ After code in A071395
    isA006039(n) = ((sigma(n)==(2*n))||isA071395(n));
    A337690(n) = sumdiv(n,d,isA006039(d));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA337386(n) = { my(x=A003961(n)); (sigma(x)>=2*x); };
    isA337479(n) = (isA337386(n)&&(1==sumdiv(n,d,isA337386(d))));
    k=0; for(n=1,2^15,if(isA337479(n),k++; print1(A337690(n), ", ")));

Formula

a(n) = A337690(A337479(n)).

A006039 Primitive nondeficient numbers.

Original entry on oeis.org

6, 20, 28, 70, 88, 104, 272, 304, 368, 464, 496, 550, 572, 650, 748, 836, 945, 1184, 1312, 1376, 1430, 1504, 1575, 1696, 1870, 1888, 1952, 2002, 2090, 2205, 2210, 2470, 2530, 2584, 2990, 3128, 3190, 3230, 3410, 3465, 3496, 3770, 3944, 4030
Offset: 1

Views

Author

Keywords

Comments

A number n is nondeficient (A023196) iff it is abundant or perfect, that is iff A001065(n) is >= n. Since any multiple of a nondeficient number is itself nondeficient, we call a nondeficient number primitive iff all its proper divisors are deficient. - Jeppe Stig Nielsen, Nov 23 2003
Numbers whose proper multiples are all abundant, and whose proper divisors are all deficient. - Peter Munn, Sep 08 2020
As a set, shares with the sets of k-almost primes this property: no member divides another member and each positive integer not in the set is either a divisor of 1 or more members of the set or a multiple of 1 or more members of the set, but not both. See A337814 for proof etc. - Peter Munn, Apr 13 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001065 (aliquot function), A023196 (nondeficient), A005101 (abundant), A091191.
Subsequences: A000396 (perfect), A071395 (primitive abundant), A006038 (odd primitive abundant), A333967, A352739.
Positions of 1's in A341620 and in A337690.
Cf. A180332, A337479, A337688, A337689, A337691, A337814, A338133 (sorted by largest prime factor), A338427 (largest prime(n)-smooth), A341619 (characteristic function), A342669.

Programs

  • Mathematica
    k = 1; lst = {}; While[k < 4050, If[DivisorSigma[1, k] >= 2 k && Min@Mod[k, lst] > 0, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Mar 09 2017 *)

Formula

Union of A000396 (perfect numbers) and A071395 (primitive abundant numbers). - M. F. Hasler, Jul 30 2016
Sum_{n>=1} 1/a(n) is in the interval (0.34842, 0.37937) (Lichtman, 2018). - Amiram Eldar, Jul 15 2020

A337386 Numbers k for which A003973(k) >= 2*A003961(k).

Original entry on oeis.org

120, 180, 240, 300, 360, 420, 480, 504, 540, 600, 630, 660, 720, 780, 840, 900, 924, 960, 990, 1008, 1020, 1050, 1080, 1092, 1140, 1170, 1200, 1260, 1320, 1380, 1440, 1470, 1500, 1512, 1560, 1620, 1650, 1680, 1740, 1800, 1848, 1860, 1890, 1920, 1980, 2016, 2040, 2100, 2160, 2184, 2220, 2280, 2310, 2340, 2400, 2460
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2020

Keywords

Comments

Provided that there are no odd perfect numbers, then these are equal to numbers k for which A003961(k) is in A005231, i.e., numbers that become odd abundant numbers when prime-shifted once.
Not all terms are even. The first odd term is a(8313165) = 334639305 = A064989(A115414(1)). (See A337385). For any odd term x present, A064989(x) is also present, for example, A064989(334639305) = 19399380 = a(482324).

Crossrefs

Subsequence of A005101, of A337381, and of A246282.
Subsequences: A337385 (odd terms), A337479 (primitive elements).

Programs

  • Mathematica
    Select[Range[2500], If[# == 1, 1, DivisorSigma[1, # ]] >= 2# &@ Apply[Times, FactorInteger[#] /. {p_, e_} /; e > 0 :> Prime[PrimePi@ p + 1]^e] &] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA337386(n) = (sigma(A003961(n))>=2*A003961(n));

A337690 a(n) is the number of primitive nondeficient numbers (A006039) dividing n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Sep 15 2020

Keywords

Comments

As a simple consequence of the definition of a primitive nondeficient number, a(n) is nonzero if and only if n is nondeficient.

Examples

			The least nondeficient number, therefore the least primitive nondeficient number is 6. So a(1) = a(2) = a(3) = a(4) = a(5) = 0 as all primitive nondeficient numbers are larger, and therefore not divisors; and a(6) = 1, as only 1 primitive nondeficient number divides 6, namely 6 itself.
60 has the following 12 divisors: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60. Of these, only 6 and 20 are in A006039, thus a(60) = 2.
		

Crossrefs

A006039 (or equivalently, its characteristic function, A341619) is used to define this sequence.
See A000203 and A023196 for definitions of deficient and nondeficient.
Sequences with similar definitions: A080224, A294927, A337539, A341620.
Positions of 0's: A005100.
Positions of numbers >= k: A023196 (k=1), A337688 (k=2), A337689 (k=3).
Positions of first appearances are given in A337691.
Differs from its derived sequence A341618 for the first time at n=120, where a(120)=2, while A341618(120)=1.

Programs

  • PARI
    A341619(n) = if(sigma(n) < (2*n), 0, fordiv(n, d, if((d= 2*d), return(0))); (1)); \\ After code in A071395
    A337690(n) = sumdiv(n, d, A341619(d));

Formula

a(n) = Sum_{d|n} A341619(d) = Sum_{d|n} [1==A341620(d)]. - Corrected by Antti Karttunen, Feb 21 2021
a(A005100(n)) = 0.
a(A006039(n)) = 1.
a(A023196(n)) >= 1.
a(A337479(n)) = A337539(n).
a(n) <= A341620(n). - Antti Karttunen, Feb 22 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=1} 1/A006039(n) = 0.3... (see A006039 for a better estimate of this constant). - Amiram Eldar, Jan 01 2024

Extensions

Data section extended to 120 terms by Antti Karttunen, Feb 21 2021

A337538 a(n) is the least k such that A003961(k*A071395(n)) is abundant.

Original entry on oeis.org

6, 6, 15, 15, 15, 15, 15, 15, 3, 6, 6, 6, 9, 2, 15, 15, 15, 3, 15, 2, 15, 3, 15, 15, 6, 3, 2, 3, 3, 3, 9, 3, 9, 3, 3, 3, 2, 15, 6, 15, 6, 3, 2, 15, 15, 15, 3, 15, 15, 15, 3, 15, 15, 3, 15, 15, 2, 15, 15, 15, 15, 2, 3, 15, 2, 15, 15, 15, 2, 15, 15, 15, 15, 2, 15, 15, 15, 15, 15, 15, 2, 2, 15, 15, 15, 15, 2
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Sep 07 2020

Keywords

Comments

A071395(n) is the n-th primitive abundant number. A003961(k) replaces each prime factor of k with the next larger prime.
See also the table in the example section of A337469.

Crossrefs

Programs

  • Mathematica
    Map[Block[{k = 1}, While[DivisorSigma[1, #] <= 2 # &[Times @@ Map[#1^#2 & @@ # &, FactorInteger[k #] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}]], k++]; k] &, Select[Range[10^4], DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] < 2 # &, Most@ Divisors@ #] == 1 &]] (* Michael De Vlieger, Oct 05 2020 *)
  • PARI
    isA071395(n) = if(sigma(n) <= 2*n, 0, fordiv(n, d, if((d != n)&&(sigma(d) >= 2*d), return(0))); (1)); \\ After code in A071395
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA337386(n) = { my(x=A003961(n)); (sigma(x)>=2*x); };
    for(n=1,2^13,if(isA071395(n), i=0; for(k=1,oo,if(isA337386(k*n),i++; print1(k,", "); break))));

Formula

a(n) = A337469(n) / A071395(n).

A337469 a(n) is the least k that is a multiple of A071395(n) (the n-th primitive abundant number) for which A003961(k) is abundant.

Original entry on oeis.org

120, 420, 1320, 1560, 4080, 4560, 5520, 6960, 1650, 3432, 3900, 4488, 7524, 1890, 17760, 19680, 20640, 4290, 22560, 3150, 25440, 5610, 28320, 29280, 12012, 6270, 4410, 6630, 7410, 7590, 23256, 8970, 28152, 9570, 9690, 10230, 6930, 52440, 22620, 59160, 24180, 12210, 8190, 63240, 64320
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Sep 07 2020

Keywords

Comments

A003961(k) replaces each prime factor of k with the next larger prime. Thus for all terms a(n), A003961(a(n)) is an odd abundant number (some of which are also primitive abundant numbers, starting with n = 1, 2, 9, 10, 12, ...).

Examples

			The table below shows a(n), for n less than 16, alongside A071395(n) and its prime factors, and the additional prime factors that are needed to produce a(n).
   n   a(n)               A071395(n)
   1    120 / (2 * 3)  =    20  =  2^2 * 5,
   2    420 / (2 * 3)  =    70  =  2 * 5 * 7,
   3   1320 / (3 * 5)  =    88  =  2^3 * 11,
   4   1560 / (3 * 5)  =   104  =  2^3 * 13,
   5   4080 / (3 * 5)  =   272  =  2^4 * 17,
   6   4560 / (3 * 5)  =   304  =  2^4 * 19,
   7   5520 / (3 * 5)  =   368  =  2^4 * 23,
   8   6960 / (3 * 5)  =   464  =  2^4 * 29,
   9   1650 / (3)      =   550  =  2 * 5^2 * 11,
  10   3432 / (2 * 3)  =   572  =  2^2 * 11 * 13,
  11   3900 / (2 * 3)  =   650  =  2 * 5^2 * 13,
  12   4488 / (2 * 3)  =   748  =  2^2 * 11 * 17,
  13   7524 / (3 * 3)  =   836  =  2^2 * 11 * 19,
  14   1890 / (2)      =   945  =  3^3 * 5 * 7,
  15  17760 / (3 * 5)  =  1184  =  2^5 * 37, ...
		

Crossrefs

See A000203 and A005101 for the definition of abundant.
A003961 and A071395 are used to define the sequence.
Sequences with related definitions: A337386, A337479, A337538.
Cf. A003973.

Programs

  • Mathematica
    Map[Block[{k = 1}, While[DivisorSigma[1, #] <= 2 # &[Times @@ Map[#1^#2 & @@ # &, FactorInteger[k #] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}]], k++]; # k] &, Select[Range[5*10^3], DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] < 2 # &, Most@ Divisors@ #] == 1 &]] (* Michael De Vlieger, Oct 05 2020 *)
  • PARI
    isA071395(n) = if(sigma(n) <= 2*n, 0, fordiv(n, d, if((d != n)&&(sigma(d) >= 2*d), return(0))); (1)); \\ After code in A071395
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA337386(n) = { my(x=A003961(n)); (sigma(x)>=2*x); };
    for(n=1,2^13,if(isA071395(n), i=0; for(k=1,oo,if(isA337386(k*n),i++; print1(k*n,", "); break))));

Formula

a(n) = A071395(n) * A337538(n).

A341604 Those primitive elements of A337386 that have exactly one primitive nondeficient divisor (A006039).

Original entry on oeis.org

990, 1170, 4590, 7650, 8550, 19470, 23562, 23868, 26334, 27324, 27846, 31050, 31878, 34452, 35190, 39330, 40194, 44370, 47430, 49590, 53010, 56610, 60030, 62730, 63270, 64170, 65790, 70110, 71910, 73530, 76590, 80370, 80910, 81090, 84870, 90270, 90630, 93330, 93366, 100890, 102510, 104310, 108630, 111690, 117450
Offset: 1

Views

Author

Antti Karttunen, Feb 20 2021

Keywords

Comments

Terms k of A337479 for which A337690(k) = 1.

Crossrefs

Programs

Showing 1-7 of 7 results.