A337504 Number of compositions of 2*n with n maximal anti-runs.
1, 1, 3, 8, 13, 33, 112, 286, 769, 2288, 6695, 18745, 54654, 160888, 467402, 1362378, 4016517, 11807966, 34708018, 102451390, 302870005, 895207191, 2650590597, 7859253320, 23316653154, 69231883374, 205773157904, 612021943421, 1821435719846, 5424528040529, 16165017705176
Offset: 0
Keywords
Examples
The a(0) = 1 through a(4) = 13 compositions: () (2) (2,2) (2,2,2) (2,2,2,2) (1,1,2) (1,1,1,3) (1,1,1,1,4) (2,1,1) (1,1,2,2) (1,1,2,2,2) (2,2,1,1) (2,2,2,1,1) (3,1,1,1) (4,1,1,1,1) (1,1,1,2,1) (1,1,1,1,3,1) (1,1,2,1,1) (1,1,1,2,2,1) (1,2,1,1,1) (1,1,1,3,1,1) (1,1,2,2,1,1) (1,1,3,1,1,1) (1,2,2,1,1,1) (1,3,1,1,1,1) (2,1,1,1,1,2)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
A106356 has this as main diagonal n = 2*k.
A336108 is the version for runs.
A337505 is the version for patterns.
A337564 is the version for runs in patterns.
A003242 counts anti-run compositions.
A011782 counts compositions.
A124767 counts runs in standard compositions.
A238343 counts compositions by descents.
A333213 counts compositions by weak ascents.
A333381 counts anti-runs in standard compositions.
A333382 counts adjacent unequal pairs in standard compositions.
A333489 ranks anti-runs.
A333755 counts compositions by number of runs.
A333769 gives run-lengths in standard compositions.
A337565 gives anti-run lengths in standard compositions.
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[2*n],Length[Split[#,UnsameQ]]==n&]],{n,0,10}]
-
PARI
a(n)={polcoef(polcoef(1 - y + y*(y-1)/(y - 1 - sum(d=1, 2*n, (y-1)^d*x^d/(1 - x^d) + O(x^(2*n+1)))), 2*n, x), n, y)} \\ Andrew Howroyd, Feb 02 2021
Formula
a(n) = [x^(2*n)*y^n] 1 - y + y*(y-1)/(y - 1 - Sum_{d>=1} (y-1)^d*x^d/(1 - x^d)). - Andrew Howroyd, Feb 02 2021
Extensions
Terms a(11) and beyond from Andrew Howroyd, Feb 02 2021
Comments