cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A337556 a(0) = 1; a(n) = (1/3) * Sum_{k=1..n} binomial(n,k) * (4^k-1) * a(n-k).

Original entry on oeis.org

1, 1, 7, 57, 607, 8121, 130527, 2447257, 52435327, 1263925881, 33851510047, 997303255257, 32052722909247, 1116001351341241, 41845542004844767, 1681112968022124057, 72039936723424794367, 3280036569708658302201, 158127582939120607830687, 8046697501049910668173657
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 31 2020

Keywords

Crossrefs

Programs

  • Maple
    E:= 3 / (3 + exp(x) - exp(4*x)):
    S:= series(E,x,41):
    seq(n!*coeff(S,x,n),n=0..40); # Robert Israel, Oct 13 2020
  • Mathematica
    a[0] = 1; a[n_] := a[n] = (1/3) Sum[Binomial[n, k] (4^k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
    nmax = 19; CoefficientList[Series[3/(3 + Exp[x] - Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    seq(n)={Vec(serlaplace(3 / (3 + exp(x + O(x*x^n)) - exp(4*x + O(x*x^n)))))} \\ Andrew Howroyd, Aug 31 2020

Formula

E.g.f.: 3 / (3 + exp(x) - exp(4*x)).
a(n) ~ n! * (r^3 - 1) * (4*r^3 - 16*r^2 + 64*r - 3) / (771 * log(r)^(n+1)), where r = 1.452626878833844... is the positive real root of the equation r*(r^3 - 1) = 3. - Vaclav Kotesovec, Aug 31 2020

A376112 a(0) = 1; a(n) = (1/2) * Sum_{k=1..n} (3^k-1) * a(k-1) * a(n-k).

Original entry on oeis.org

1, 1, 5, 74, 3119, 384099, 140605620, 153966205482, 505318125737963, 4973847408741044519, 146857822147450491641165, 13007931631590001724722114996, 3456493610037973055076316970551876, 2755388815749774181719259556096183210356, 6589473777446361501832833785593366614276353520
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = (1/2) Sum[(3^k - 1) a[k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 14}]
    nmax = 14; A[] = 0; Do[A[x] = 2/(2 + x A[x] - 3 x A[3 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 2 / (2 + x * A(x) - 3 * x * A(3*x)).
Showing 1-2 of 2 results.