cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A337657 Let M_k denote the addition table for the first k terms of A337656. M_k contains exactly k*(k+1)/2 distinct numbers, and these numbers are a subset of the entries in M_{k+1}. The present sequence consists of the numbers that never appear in any M_k.

Original entry on oeis.org

5, 9, 11, 16, 17, 18, 22, 25, 26, 28, 29, 34, 35, 36, 38, 39, 41, 43, 46, 48, 49, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 67, 69, 70, 71, 73, 75, 76, 78, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 93, 96, 97, 99, 100, 101, 102, 104, 105, 106, 112, 113, 115, 116, 117, 118, 120, 124, 126, 128
Offset: 1

Views

Author

N. J. A. Sloane, Oct 01 2020

Keywords

Comments

Note that if A337656(k+1) = t, all entries in M_{k+1} that are not entries in M_k are >= t.

Examples

			The addition table, M_9:
   + |  0  1  3  7 12 20 30  44  65
-----+-----------------------------
   0 |  0
   1 |  1  2
   3 |  3  4  6
   7 |  7  8 10 14
  12 | 12 13 15 19 24
  20 | 20 21 23 27 32 40
  30 | 30 31 33 37 42 50 60
  44 | 44 45 47 51 56 64 74  88
  65 | 65 66 68 72 77 85 95 109 130
		

Crossrefs

A338031 Triangular array read by rows: T(n,k) = A337656(n) + A337656(k) for 1 <= k <= n.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 10, 14, 12, 13, 15, 19, 24, 20, 21, 23, 27, 32, 40, 30, 31, 33, 37, 42, 50, 60, 44, 45, 47, 51, 56, 64, 74, 88, 65, 66, 68, 72, 77, 85, 95, 109, 130, 91, 92, 94, 98, 103, 111, 121, 135, 156, 182, 107, 108, 110, 114, 119, 127, 137, 151, 172, 198, 214
Offset: 1

Views

Author

Peter Kagey, Oct 07 2020

Keywords

Examples

			Addition table begins:
   + |  0  1  3  7 12 20 30  44  65
-----+-----------------------------
   0 |  0
   1 |  1  2
   3 |  3  4  6
   7 |  7  8 10 14
  12 | 12 13 15 19 24
  20 | 20 21 23 27 32 40
  30 | 30 31 33 37 42 50 60
  44 | 44 45 47 51 56 64 74  88
  65 | 65 66 68 72 77 85 95 109 130
		

Crossrefs

Cf. A337656, A337657, A338032 (by antidiagonals), A338033 (multiplication).

A338032 Addition table of A337656, read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 3, 2, 3, 7, 4, 4, 7, 12, 8, 6, 8, 12, 20, 13, 10, 10, 13, 20, 30, 21, 15, 14, 15, 21, 30, 44, 31, 23, 19, 19, 23, 31, 44, 65, 45, 33, 27, 24, 27, 33, 45, 65, 91, 66, 47, 37, 32, 32, 37, 47, 66, 91, 107, 92, 68, 51, 42, 40, 42, 51, 68, 92, 107
Offset: 1

Views

Author

Peter Kagey, Oct 07 2020

Keywords

Examples

			Addition table begins:
   + |  0  1  3  7 12 20 30  44  65
-----+-----------------------------
   0 |  0  1  3  7 12 20 30  44  65
   1 |  1  2  4  8 13 21 31  45  66
   3 |  3  4  6 10 15 23 33  47  68
   7 |  7  8 10 14 19 27 37  51  72
  12 | 12 13 15 19 24 32 42  56  77
  20 | 20 21 23 27 32 40 50  64  85
  30 | 30 31 33 37 42 50 60  74  95
  44 | 44 45 47 51 56 64 74  88 109
  65 | 65 66 68 72 77 85 95 109 130
		

Crossrefs

Cf. A337656, A337657, A338031 (by rows), A338034 (multiplication table).

A338033 Triangular array read by rows: T(n,k) = A337656(n) * A337656(k) for 1 <= k <= n.

Original entry on oeis.org

0, 0, 1, 0, 3, 9, 0, 7, 21, 49, 0, 12, 36, 84, 144, 0, 20, 60, 140, 240, 400, 0, 30, 90, 210, 360, 600, 900, 0, 44, 132, 308, 528, 880, 1320, 1936, 0, 65, 195, 455, 780, 1300, 1950, 2860, 4225, 0, 91, 273, 637, 1092, 1820, 2730, 4004, 5915, 8281
Offset: 1

Views

Author

Peter Kagey, Oct 07 2020

Keywords

Examples

			Multiplication table begins:
   * | 0  1   3   7  12   20   30   44   65
-----+-------------------------------------
   0 | 0
   1 | 0  1
   3 | 0  3   9
   7 | 0  7  21  49
  12 | 0 12  36  84 144
  20 | 0 20  60 140 240  400
  30 | 0 30  90 210 360  600  900
  44 | 0 44 132 308 528  880 1320 1936
  65 | 0 65 195 455 780 1300 1950 2860 4225
		

Crossrefs

Cf. A337656, A337657, A338031 (addition), A338034 (by antidiagonals).

A338034 Multiplication table of A337656, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 7, 9, 7, 0, 0, 12, 21, 21, 12, 0, 0, 20, 36, 49, 36, 20, 0, 0, 30, 60, 84, 84, 60, 30, 0, 0, 44, 90, 140, 144, 140, 90, 44, 0, 0, 65, 132, 210, 240, 240, 210, 132, 65, 0, 0, 91, 195, 308, 360, 400, 360, 308, 195, 91, 0
Offset: 1

Views

Author

Peter Kagey, Oct 07 2020

Keywords

Examples

			Multiplication table begins:
   * | 0  1   3   7  12   20   30   44   65
-----+-------------------------------------
   0 | 0  0   0   0   0    0    0    0    0
   1 | 0  1   3   7  12   20   30   44   65
   3 | 0  3   9  21  36   60   90  132  195
   7 | 0  7  21  49  84  140  210  308  455
  12 | 0 12  36  84 144  240  360  528  780
  20 | 0 20  60 140 240  400  600  880 1300
  30 | 0 30  90 210 360  600  900 1320 1950
  44 | 0 44 132 308 528  880 1320 1936 2860
  65 | 0 65 195 455 780 1300 1950 2860 4225
		

Crossrefs

Cf. A337656, A337657, A338032 (addition table), A338033 (by rows).

A337655 a(1)=1; thereafter, a(n) is the smallest number such that both the addition and multiplication tables for (a(1),...,a(n)) contain n*(n+1)/2 different entries (the maximum possible).

Original entry on oeis.org

1, 2, 5, 7, 15, 22, 31, 50, 68, 90, 101, 124, 163, 188, 215, 253, 322, 358, 455, 486, 527, 631, 702, 780, 838, 920, 1030, 1062, 1197, 1289, 1420, 1500, 1689, 1765, 1886, 2114, 2353, 2410, 2570, 2686, 2857, 3063, 3207, 3477, 3616, 3845, 3951, 4150, 4480, 4595, 4746, 5030, 5286, 5698, 5999, 6497, 6624, 6938, 7219, 7661, 7838, 8469, 8665, 9198, 9351, 9667, 9966
Offset: 1

Views

Author

Jean-Paul Delahaye, Sep 30 2020

Keywords

Comments

If one specifies that not only are there n(n+1)/2 distinct numbers in the addition and multiplication tables, but that all n(n+1) numbers are distinct, then the sequence is A337946 - David A. Corneth, Oct 02 2020

Crossrefs

See A337659 and A337660 (for the addition table), and A337661 and A337662 (for the multiplication table).
For similar sequences that focus just on the addition or multiplication tables, see A005282 and A066720.
Cf. also A337946.

Programs

  • Mathematica
    terms=67;a[1]=b[1]=1;a1=b1={1};Do[k=a[n-1]+1;While[a2=Union@Join[{2k},Array[a@#+k&,n-1]];b2=Union@Join[{k^2},Array[b@#*k&,n-1]];Intersection[a2,a1]!={}||Intersection[b2,b1]!={},k++];a[n]=b[n]=k;a1=Union[a1,a2];b1=Union[b1,b2],{n,2,terms}];Array[a,terms] (* Giorgos Kalogeropoulos, Nov 15 2021 *)

A337946 a(1)=1; thereafter, a(n) is the smallest number such that the addition and multiplication tables for (a(1),...,a(n)) together contain n*(n+1) different entries (the maximum possible).

Original entry on oeis.org

1, 3, 7, 12, 22, 30, 47, 61, 85, 113, 126, 177, 193, 246, 279, 321, 341, 428, 499, 571, 616, 686, 754, 854, 975, 1052, 1150, 1317, 1376, 1457, 1513, 1664, 1761, 1961, 2307, 2434, 2591, 2795, 2843, 3057, 3226, 3405, 3508, 3776, 3930, 4023, 4196, 4575, 4731
Offset: 1

Views

Author

Peter Kagey, Oct 02 2020

Keywords

Examples

			The addition table of a(k) for k=1..5:
   + | 1 3  7 12 22
  ---+-------------
   1 | 2 4  8 13 23
   3 |   6 10 15 25
   7 |     14 19 29
  12 |        24 34
  22 |           44
The multiplication table of a(k) for k=1..5:
   * | 1 3  7  12  22
  ---+---------------
   1 | 1 3  7  12  22
   3 |   9 21  36  66
   7 |     49  84 154
  12 |        144 264
  22 |            484
These two tables contain the 5*(5+1) = 30 values {1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 19, 21, 22, 23, 24, 25, 29, 34, 36, 44, 49, 66, 84, 144, 154, 264, 484}.
		

Crossrefs

Cf. A005282 (addition table), A066720 (multiplication table), A337655, A337656, A337947.

Programs

  • Mathematica
    j={k=1};Do[While[l=Join[j,{++k}];g=Union[Sort/@Tuples[l,{2}]];p=Times@@#&/@g;s=Total/@g;!SameQ@@Flatten[{Length@Union@Flatten@{p,s},Length@l(Length@l+1)}]];j=Join[j,{k}];k=Last@j,48];j (* Giorgos Kalogeropoulos, Nov 16 2021 *)

A337659 Triangular array read by rows: T(n,k) = A337655(n) + A337655(k), for 1 <= k <= n.

Original entry on oeis.org

2, 3, 4, 6, 7, 10, 8, 9, 12, 14, 16, 17, 20, 22, 30, 23, 24, 27, 29, 37, 44, 32, 33, 36, 38, 46, 53, 62, 51, 52, 55, 57, 65, 72, 81, 100, 69, 70, 73, 75, 83, 90, 99, 118, 136, 91, 92, 95, 97, 105, 112, 121, 140, 158, 180, 102, 103, 106, 108, 116, 123, 132, 151, 169, 191, 202
Offset: 1

Views

Author

N. J. A. Sloane, Oct 03 2020

Keywords

Comments

This is the lower triangular part of the addition table from A337655, read by rows.
Sequences A337659, A337660, A337661, A337662 arise from the addition and multiplication tables in A337655, each one described in two ways. Perhaps someone could help by creating the analogous sets of four sequences for the addition and multiplication tables in the closely related sequences A337656 and A337946.

Examples

			The addition table from A337655 begins:
   2,  3,  6,  8,  16,  23,  32,  51,  69,  91, ...
   3,  4,  7,  9,  17,  24,  33,  52,  70,  92, ...
   6,  7, 10, 12,  20,  27,  36,  55,  73,  95, ...
   8,  9, 12, 14,  22,  29,  38,  57,  75,  97, ...
  16, 17, 20, 22,  30,  37,  46,  65,  83, 105, ...
  23, 24, 27, 29,  37,  44,  53,  72,  90, 112, ...
  32, 33, 36, 38,  46,  53,  62,  81,  99, 121, ...
  51, 52, 55, 57,  65,  72,  81, 100, 118, 140, ...
  69, 70, 73, 75,  83,  90,  99, 118, 136, 158, ...
  91, 92, 95, 97, 105, 112, 121, 140, 158, 180, ...
  ...
		

Crossrefs

A337658 Let M_k denote the addition table for the first k terms of A337655. M_k contains exactly k*(k+1)/2 distinct numbers, and these numbers are a subset of the entries in M_{k+1}. The present sequence consists of the numbers that never appear in any M_k.

Original entry on oeis.org

1, 5, 11, 13, 15, 18, 19, 21, 25, 26, 28, 31, 34, 35, 39, 40, 41, 42, 43, 45, 47, 48, 49, 50, 54, 56, 58, 59, 60, 61, 63, 64, 66, 67, 68, 71, 74, 76, 77, 78, 79, 80, 82, 84, 85, 86, 87, 88, 89, 93, 94, 96, 98, 101, 104, 107, 109, 110, 111, 113, 114, 115, 117, 119, 120, 122, 124, 127
Offset: 1

Views

Author

Jean-Paul Delahaye, Oct 01 2020

Keywords

Crossrefs

A338012 a(1)=0; thereafter, a(n) is the smallest number such that the addition and multiplication tables for (a(1),...,a(n)) together contain n^2 different entries (the maximum possible).

Original entry on oeis.org

0, 3, 4, 10, 18, 23, 34, 55, 67, 93, 95, 120, 149, 166, 228, 271, 351, 398, 439, 505, 563, 611, 732, 771, 806, 924, 1052, 1121, 1278, 1412, 1586, 1654, 1875, 2012, 2245, 2341, 2445, 2616, 2819, 2920, 3034, 3322, 3518, 3754, 3918, 4016, 4311, 4649, 4848, 5321
Offset: 1

Views

Author

Peter Kagey, Oct 06 2020

Keywords

Examples

			Addition table begins:
   + |  0  3  4 10 18 23  34  55  67
-----+-------------------------------
   0 |  0
   3 |  3  6
   4 |  4  7  8
  10 | 10 13 14 20
  18 | 18 21 22 28 36
  23 | 23 26 27 33 41 46
  34 | 34 37 38 44 52 57  68
  55 | 55 58 59 65 73 78  89 110
  67 | 67 70 71 77 85 90 101 122 134
Multiplication table begins:
   * | 0   3   4  10   18   23   34   55   67
-----+---------------------------------------
   0 | 0
   3 | 0   9
   4 | 0  12  16
  10 | 0  30  40 100
  18 | 0  54  72 180  324
  23 | 0  69  92 230  414  529
  34 | 0 102 136 340  612  782 1156
  55 | 0 165 220 550  990 1265 1870 3025
  67 | 0 201 268 670 1206 1541 2278 3685 4489
		

Crossrefs

Showing 1-10 of 10 results.