A337691 a(n) is the least positive integer divisible by exactly n primitive nondeficient numbers (A006039).
1, 6, 60, 140, 420, 3780, 17160, 28600, 40040, 138600, 120120, 180180, 300300, 360360, 600600, 1351350, 900900, 4144140, 1801800, 3063060, 5405400, 6126120, 8558550, 7657650, 19399380, 20720700, 17117100, 15315300, 29099070, 30630600, 45945900, 70450380, 91891800, 87297210
Offset: 0
Keywords
Examples
The least nondeficient number, therefore the least primitive nondeficient number is 6. So a(1) = 6, as the smallest number divisible by exactly 1 primitive nondeficient number. Table of n, a(n) and the relevant divisors starts: n a(n) divisors in A006039 0 1 (none); 1 6 6; 2 60 6, 20; 3 140 20, 28, 70; 4 420 6, 20, 28, 70; 5 3780 6, 20, 28, 70, 945; 6 17160 6, 20, 88, 104, 572, 1430; 7 28600 20, 88, 104, 550, 572, 650, 1430; 8 40040 20, 28, 70, 88, 104, 572, 1430, 2002; ... Note that a(6), a(7), a(8) are 3*5720, 5*5720, 7*5720.
Links
- David A. Corneth, Table of n, a(n) for n = 0..43
- David A. Corneth, Some more upper bounds on a(n) for n at most 110.
Crossrefs
Programs
-
PARI
\\ Code for A337690 given under that entry. A337691list(search_up_to_n) = { my(m=Map(),lista=List([]),t); for(n=1,search_up_to_n,if(!(n%(2^24)),print1("(",n,")")); t=A337690(n); if(!mapisdefined(m,t), mapput(m,t,n))); for(n=0,oo,if(mapisdefined(m,n,&t), listput(lista,t), return(Vec(lista)))); }; v337691 = A337691list(2^27); A337691(n) = v337691[1+n];
Formula
a(n) = min({k integer : k >= 1 and A337690(k) = n}).
Comments