A337759 Squares that are the sum of 3 distinct nonzero squares.
49, 81, 121, 169, 196, 225, 289, 324, 361, 441, 484, 529, 625, 676, 729, 784, 841, 900, 961, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969
Offset: 1
Keywords
Examples
49 is a term because 6^2(36) + 3^2(9) + 2^2(4) = 7^2(49). 81 is a term because 8^2(64) + 4^2(16) + 1^2(1) = 9^2(81). 121 is a term because 9^2(81) + 6^2(36) + 2^2(4) = 11^2(121). 625 is a term because 9^2(81) + 12^2(144) + 20^2(400) = 25^2(625).
Programs
-
Mathematica
Select[Range[63]^2, Length @ Reduce[x^2 + y^2 + z^2 == # && 0 < x < y < z, {x, y, z}, Integers] > 0 &] (* Amiram Eldar, Sep 18 2020 *)
Formula
a(n) = A161992(n)^2. - Andrew Howroyd, Sep 18 2020
Comments