cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Joseph Caliendo

Joseph Caliendo's wiki page.

Joseph Caliendo has authored 2 sequences.

A358271 Product of the digits of 3^n.

Original entry on oeis.org

1, 3, 9, 14, 8, 24, 126, 112, 180, 1296, 0, 1372, 240, 3240, 217728, 0, 0, 0, 0, 24192, 0, 0, 0, 2709504, 6635520, 0, 66355200, 8534937600, 731566080, 0, 0, 10369949184, 0, 0, 399983754240, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6243870843076608000
Offset: 0

Author

Joseph Caliendo, Nov 06 2022

Keywords

Comments

a(68) is likely the last nonzero term; see A030700 and A238939. - Michael S. Branicky, Nov 06 2022

Examples

			For a(0), 3^0 = 1 with product of digits 1;
for a(3), 3^3 = 27 with product of digits 2*7 = 14;
for a(10), 3^10 = 59049 with product of digits 5*9*0*4*9 = 0.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ IntegerDigits[3^n]; Array[a, 69, 0] (* Amiram Eldar, Nov 07 2022 *)
  • PARI
    a(n) = vecprod(digits(3^n)); \\ Michel Marcus, Nov 07 2022
  • Python
    from math import prod
    def a(n): return prod(map(int, str(3**n)))
    print([a(n) for n in range(69)]) # Michael S. Branicky, Nov 06 2022
    

Formula

a(n) = A007954(A000244(n)).

Extensions

More terms from Michael S. Branicky, Nov 06 2022

A337759 Squares that are the sum of 3 distinct nonzero squares.

Original entry on oeis.org

49, 81, 121, 169, 196, 225, 289, 324, 361, 441, 484, 529, 625, 676, 729, 784, 841, 900, 961, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969
Offset: 1

Author

Joseph Caliendo, Sep 18 2020

Keywords

Comments

These are the squares in A004432. - Omar E. Pol, Sep 18 2020

Examples

			49 is a term because 6^2(36) + 3^2(9) + 2^2(4) = 7^2(49).
81 is a term because 8^2(64) + 4^2(16) + 1^2(1) = 9^2(81).
121 is a term because 9^2(81) + 6^2(36) + 2^2(4) = 11^2(121).
625 is a term because 9^2(81) + 12^2(144) + 20^2(400) = 25^2(625).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[63]^2, Length @ Reduce[x^2 + y^2 + z^2 == # && 0 < x < y < z, {x, y, z}, Integers] > 0 &] (* Amiram Eldar, Sep 18 2020 *)

Formula

a(n) = A161992(n)^2. - Andrew Howroyd, Sep 18 2020