cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337770 a(0)=1; a(n) is the leading digit of a(n-1) multiplied by n concatenated with the remaining digits of a(n-1).

Original entry on oeis.org

1, 1, 2, 6, 24, 104, 604, 4204, 32204, 272204, 2072204, 22072204, 242072204, 2642072204, 28642072204, 308642072204, 4808642072204, 68808642072204, 1088808642072204, 19088808642072204, 209088808642072204, 4209088808642072204, 88209088808642072204
Offset: 0

Views

Author

Jamie Robert Creasey, Sep 19 2020

Keywords

Comments

This sequence bears similarities to the digit factorials, see A089718. However, unlike the digit factorials, we only multiply the leading digit of a(n-1) by n, instead of all digits present. As such, for indices greater than 4, a(n) includes all the digits from a(n-1), except those resulting from the lead digit of a(n-1) being multiplied by n.
If one attempts this with the last digit of a(n-1) instead, 220 is the largest integer reached by the process. All indices greater than 4 yield the same number, as the last digit of 220 is 0 which, if multiplied by 5, results in itself and, if other digits remain consistent, causes 220 to repeat infinitely.

Examples

			As a(4) is 24, a(5) is {2*5, 4} which is 104, where {x, y} is the concatenation of x and y.
a(7) is 4204, a(8) is {4*8, 204} which is 32204.
		

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:=Module[{ida=IntegerDigits[a]},{n+1,ida[[1]](n+1)10^(Length[ ida]-1)+FromDigits[Rest[ida]]}]; NestList[nxt,{0,1},25][[All,2]] (* Harvey P. Dale, Nov 13 2021 *)
  • PARI
    seq(n)={my(v=vector(n+1)); v[1]=1; for(n=1, n, my(t=v[n], b=10^logint(t,10), h=t\b*b); v[n+1] = h*n + (t-h)); v} \\ Andrew Howroyd, Sep 19 2020