cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A337787 Number of addition triangles whose sum is n (version 2).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 6, 3, 5, 2, 8, 2, 8, 4, 8, 3, 12, 3, 11, 6, 11, 5, 15, 4, 16, 9, 14, 7, 20, 8, 18, 11, 20, 12, 25, 8, 25, 18, 24, 12, 31, 16, 32, 19, 29, 21, 39, 19, 36, 28, 38, 25, 47, 25, 46, 33, 46, 34, 55, 31, 56, 44, 55, 39, 67, 42, 66, 52, 66, 53, 76, 50, 81, 65, 77, 57
Offset: 1

Views

Author

Seiichi Manyama, Sep 21 2020

Keywords

Comments

An addition triangle has any set of positive numbers as base; other rows are formed by adding pairs of adjacent numbers.
Reversing the base does not count as a different triangle.

Examples

			   n |
-----+-------------------------------
   1 |  1
-----+-------------------------------
   2 |  2
-----+-------------------------------
   3 |  3
-----+-------------------------------
   4 |      2
     |  4  1,1
-----+-------------------------------
   5 |  5
-----+-------------------------------
   6 |      3
     |  6  1,2
-----+-------------------------------
   7 |  7
-----+-------------------------------
   8 |      4    4
     |  8  1,3  2,2
-----+-------------------------------
   9 |  9
-----+-------------------------------
  10 |      5    5
     | 10  1,4  2,3
-----+-------------------------------
  11 |       4
     |      2,2
     | 11  1,1,1
-----+-------------------------------
  12 |      6    6    6
     | 12  1,5  2,4  3,3
-----+-------------------------------
  13 | 13
-----+-------------------------------
  14 |                      5
     |      7    7    7    2,3
     | 14  1,6  2,5  3,4  1,1,2
-----+-------------------------------
  15 | 15
-----+-------------------------------
  16 |                           6
     |      8    8    8    8    3,3
     | 16  1,7  2,6  3,5  4,4  1,2,1
-----+-------------------------------
  17 |       6      6
     |      2,4    3,3
     | 17  1,1,3  2,1,2
-----+-------------------------------
  18 |      9    9    9    9
     | 18  1,8  2,7  3,6  4,5
-----+-------------------------------
  19 |       7
     |      3,4
     | 19  1,2,2
		

Crossrefs

Cf. A014430, A062684, A062896, see A337785 for version 1.

Programs

  • Ruby
    def f(n)
      ary = [1]
      (n - 1).times{|i|
        ary = [0] + ary + [0]
        ary = (0..i + 1).map{|j| ary[j] + ary[j + 1] + 1}
      }
      ary
    end
    def A(n)
      f_ary = (1..n / 2).map{|i| [i]}
      cnt = 2
      s = 1
      while f_ary.size > 0
        s_ary = f(s + 1)
        b_ary = []
        f_ary.each{|i|
          (1..i[0] - 1).each{|j|
            a = [j]
            (0..s - 1).each{|k|
              num = i[k] - a[k]
              if num > 0
                a << num
              else
                break
              end
            }
            if a.size == s + 1
              sum = (0..s).inject(0){|t, m| t + s_ary[m] * a[m]}
              if sum < n
                b_ary << a
              elsif sum == n
                cnt += 1
                cnt += 1 if a == a.reverse
              end
            end
          }
        }
        f_ary = b_ary
        s += 1
      end
      cnt / 2
    end
    def A337787(n)
      (1..n).map{|i| A(i)}
    end
    p A337787(50)
Showing 1-1 of 1 results.