A337798 Number of partitions of the n-th n-gonal pyramidal number into distinct n-gonal pyramidal numbers.
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 4, 5, 4, 5, 7, 11, 9, 4, 12, 12, 24, 23, 42, 59, 64, 58, 124, 206, 212, 168, 377, 539, 703, 873, 1122, 1505, 1943, 2724, 4100, 4513, 6090, 7138, 12079, 16584, 20240, 27162, 35874, 52622, 69817, 88059, 115628, 152756, 219538, 240200, 358733, 480674
Offset: 0
Keywords
Examples
a(9) = 2 because the ninth 9-gonal pyramidal number is 885 and we have [885] and [420, 266, 155, 34, 10].
Links
- Eric Weisstein's World of Mathematics, Pyramidal Number
- Index entries for sequences related to partitions
- Index to sequences related to pyramidal numbers
Programs
-
Maple
p:= (n,k) -> k * (k + 1) * (k * (n - 2) - n + 5) / 6: f:= proc(n) local k, P; P:= mul(1+x^p(n,k),k=1..n); coeff(P,x,p(n,n)); end proc: map(f, [$0..80]); # Robert Israel, Sep 23 2020
-
PARI
default(parisizemax, 2^31); p(n,k) = k*(k + 1)*(k*(n-2) - n + 5)/6; a(n) = my(f=1+x*O(x^p(n,n))); for(k=1, n, f*=1+x^p(n,k)); polcoeff(f, p(n,n)); \\ Jinyuan Wang, Dec 21 2021
Formula
a(n) = [x^p(n,n)] Product_{k=1..n} (1 + x^p(n,k)), where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number.
Extensions
More terms from Robert Israel, Sep 23 2020