A337799 Number of compositions (ordered partitions) of the n-th n-gonal pyramidal number into n-gonal pyramidal numbers.
1, 1, 2, 15, 2780, 94947913, 5470124262136760, 5979009355803053742719666641, 1610158754567753309521653012201612266212334009, 1566217729562552701894041200097975651072376485590145959656670312797530
Offset: 0
Keywords
Examples
a(3) = 15 because the third tetrahedral (or triangular pyramidal) number is 10 and we have [10], [4, 4, 1, 1], [4, 1, 4, 1], [4, 1, 1, 4], [1, 4, 4, 1], [1, 4, 1, 4], [1, 1, 4, 4], [4, 1, 1, 1, 1, 1, 1], [1, 4, 1, 1, 1, 1, 1], [1, 1, 4, 1, 1, 1, 1], [1, 1, 1, 4, 1, 1, 1], [1, 1, 1, 1, 4, 1, 1], [1, 1, 1, 1, 1, 4, 1], [1, 1, 1, 1, 1, 1, 4] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
Links
- Eric Weisstein's World of Mathematics, Pyramidal Number
- Index entries for sequences related to compositions
- Index to sequences related to pyramidal numbers
Formula
a(n) = [x^p(n,n)] 1 / (1 - Sum_{k=1..n} x^p(n,k)), where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number.