cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337848 Odd integers k>=5 such that 2^((k-1)/2)-1 == 0 (mod k*(k-3)/2).

Original entry on oeis.org

73, 241, 2593, 5113, 8713, 18433, 53593, 55681, 86113, 102241, 126337, 127873, 158113, 181721, 184369, 186049, 208393, 219313, 221537, 241921, 262657, 267913, 282313, 314161, 314401, 341641, 362521, 398441, 415873, 450913, 534241, 619921, 651169, 731881, 953473, 1045801, 1153441, 1294177, 1554281, 2023921, 2162401, 2345401, 2533681
Offset: 1

Views

Author

Benoit Cloitre, Sep 26 2020

Keywords

Comments

Computed terms are prime. Is it always the case? If not it would be interesting to compute the pseudoprimes.
1234125721 = 24841*49681, 4294901761 = 193*22253377, 6602556241 = 57457*114913 are composite counterexamples to the assumption that all terms are prime. - Hugo Pfoertner, Sep 26 2020
These are a(420), a(705) and a(830). Together with a(956) = 10025492401 = 101 * 701 * 141601 they are the first 4 composite terms. - Amiram Eldar, Jun 17 2022

Crossrefs

Cf. A337818.

Programs

  • Mathematica
    Select[Range[5, 10^6, 2], PowerMod[2, (# - 1)/2, #*(# - 3)/2] == 1 &] (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    is(n) = n%2 && n>=3 && Mod(2, n*(n-3)/2)^((n-1)/2) ==1