A337875 Integers that can be written m = k*sigma(k) = q*sigma(q) where (k, q) is a primitive solution of this equation and sigma(m) is the sum of divisors of (m).
336, 5952, 27776, 60480, 97536, 196560, 455168, 8062976, 15713280, 97493760, 104282640, 402604032, 1597639680, 1878818816, 2959632000, 6499584000, 15923980800, 18979440480, 33281933312, 54027792000, 102953410560, 103078428672, 103448378880
Offset: 1
Keywords
Examples
For a(1): 12 * sigma(12) = 14 * sigma(14) = 336 with p=2 and r=3. For a(2): 48 * sigma(48) = 62 * sigma(62) = 5952 with p=2 and r=5. 10080 is not a term: 60 * sigma(60) = 70 * sigma(70) = 10080 but as 60/5 = 12 and 70/5 = 14, hence, this solution that is generated by the first example is not primitive. For a(4): 160 * sigma(160) = 189 * sigma(189) = 60480 is the smallest example with gcd(k,q) = 1 with k = 2^5*5 = 160 and q = 3^3*7 = 189. For a(6): 315 * sigma(315) = 351 * sigma(351) = 196560 is the smallest example with k and q both odd. For a(18): 76230 * sigma(76230) = 80028 * sigma(80028) = 84942 * sigma(84942) = A337873(3266) = 18979440480. -> 1) for k=76230 and q=84942; with d=11^2, k/11^2=630 and q/11^2=702. 630 * sigma(630) = 702 * sigma(702) = 1179360, hence (76230, 84942) is not a primitive solution; -> 2) for k=80028 and q=84942; with d=13, k/13=6156 and q/13=6534. 6156 * sigma(6156) = 6534 * sigma(6534) = 104282640, hence (80028, 84942) is not a primitive solution; but -> 3) for k=76230 and q=80028, there is no common divisor d such that k/d and q/d can satisfy (k/d)*sigma(k/d) = (q/d)*sigma(q/d), so (76239, 80028) is a primitive solution linked to m = 18979440480 that is the term a(18).
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B11, p. 101-102.
Links
- Mac Tutor History of Mathematics, Leo Moser.
Crossrefs
Programs
-
PARI
process(x, y, resp) = {my(vresp = Vec(resp)); for (i=1, #vresp, if (x/vresp[i][1] == y/vresp[i][2], return(resp));); listput(resp, [x, y]); resp;} findprim(res, mx) = {my(mp = Map()); my(resp = List()); for (i=1, #res, my(vx = mapget(mx, res[i])); for (j=1, #vx-1, for (k=j+1, #vx, resp = process(vx[j], vx[k], resp);););); resp;} upto(n) = {my(m = Map(), mx = Map(), res = List(), n = sqrtint(n), resp);for(i = 1, n, my(c = i*sigma(i)); if(mapisdefined(m, c), listput(res, c); mapput(m, c, mapget(m, c) + 1); mapput(mx, c, concat(mapget(mx, c), i)), mapput(m, c, 1); mapput(mx, c, [i]);)); listsort(res, 1); res = Vec(select(x -> x <= (n+1)^2, res)); resp = findprim(res, mx); vresp = Vec(resp); vecsort(vector(#vresp, k, vresp[k][1]*sigma(vresp[k][1])),,8);} upto(10^12) \\ Michel Marcus, Oct 17 2020
Extensions
More terms from Jinyuan Wang, Oct 10 2020
Comments