A337889 Array read by descending antidiagonals: T(n,k) is the number of chiral pairs of colorings of the square faces of a regular n-dimensional orthotope (hypercube) using k or fewer colors.
0, 0, 0, 0, 0, 0, 0, 1, 40927, 0, 0, 20, 731279799, 314824333015938998688, 0, 0, 120, 732272925320, 38491882659300767730994725249684096, 38343035259947576596859560773963975000551460473665493534170658111488, 0
Offset: 2
Examples
Array begins with T(2,1): 0 0 0 0 0 0 ... 0 0 1 20 120 455 ... 0 40927 731279799 732272925320 155180061396500 12338466190481025 ...
Links
- K. Balasubramanian, Computational enumeration of colorings of hyperplanes of hypercubes for all irreducible representations and applications, J. Math. Sci. & Mod. 1 (2018), 158-180.
Crossrefs
Programs
-
Mathematica
m=2; (* dimension of color element, here a square face *) Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1+2x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n-m]]; FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]); CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]],1,-1]Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]); PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]); pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*) row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)] array[n_, k_] := row[n] /. b -> k Table[array[n,d+m-n], {d,6}, {n,m,d+m-1}] // Flatten
Comments