cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A337884 Array read by descending antidiagonals: T(n,k) is the number of unoriented colorings of the triangular faces of a regular n-dimensional simplex using k or fewer colors.

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 4, 15, 34, 1, 5, 35, 792, 2136, 1, 6, 70, 10688, 4977909, 7013320, 1, 7, 126, 90005, 1533771392, 9930666709494, 1788782616656, 1, 8, 210, 533358, 132597435125, 234249157811872000, 12979877431438089379035, 53304527811667897248, 1
Offset: 2

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

Each chiral pair is counted as one when enumerating unoriented arrangements. An n-simplex has n+1 vertices. For n=2, the figure is a triangle with one triangular face. For n=3, the figure is a tetrahedron with 4 triangular faces. For higher n, the number of triangular faces is C(n+1,3).
Also the number of unoriented colorings of the peaks of a regular n-dimensional simplex. A peak of an n-simplex is an (n-3)-dimensional simplex.

Examples

			Table begins with T(2,1):
 1    2       3          4            5             6               7 ...
 1    5      15         35           70           126             210 ...
 1   34     792      10688        90005        533358         2437848 ...
 1 2136 4977909 1533771392 132597435125 5079767935320 110837593383153 ...
For T(3,4)=35, the 34 achiral arrangements are AAAA, AAAB, AAAC, AAAD, AABB, AABC, AABD, AACC, AACD, AADD, ABBB, ABBC, ABBD, ABCC, ABDD, ACCC, ACCD, ACDD, ADDD, BBBB, BBBC, BBBD, BBCC, BBCD, BBDD, BCCC, BCCD, BCDD, BDDD, CCCC, CCCD, CCDD, CDDD, and DDDD. The chiral pair is ABCD-ABDC.
		

Crossrefs

Cf. A337883 (oriented), A337885 (chiral), A337886 (achiral), A051168 (binary Lyndon words).
Other elements: A325000 (vertices), A327084 (edges).
Other polytopes: A337888 (orthotope), A337892 (orthoplex).
Rows 2-4 are A000027, A000332(n+3), A063843.

Programs

  • Mathematica
    m=2; (* dimension of color element, here a triangular face *)
    lw[n_,k_]:=lw[n, k]=DivisorSum[GCD[n,k],MoebiusMu[#]Binomial[n/#,k/#]&]/n (*A051168*)
    cxx[{a_, b_},{c_, d_}]:={LCM[a, c], GCD[a, c] b d}
    compress[x:{{, } ...}] := (s=Sort[x];For[i=Length[s],i>1,i-=1,If[s[[i,1]]==s[[i-1,1]], s[[i-1,2]]+=s[[i,2]]; s=Delete[s,i], Null]]; s)
    combine[a : {{, } ...}, b : {{, } ...}] := Outer[cxx, a, b, 1]
    CX[p_List, 0] := {{1, 1}} (* cycle index for partition p, m vertices *)
    CX[{n_Integer}, m_] := If[2m>n, CX[{n}, n-m], CX[{n},m] = Table[{n/k, lw[n/k, m/k]}, {k, Reverse[Divisors[GCD[n, m]]]}]]
    CX[p_List, m_Integer] := CX[p, m] = Module[{v = Total[p], q, r}, If[2 m > v, CX[p, v - m], q = Drop[p, -1]; r = Last[p]; compress[Flatten[Join[{{CX[q, m]}}, Table[combine[CX[q, m - j], CX[{r}, j]], {j, Min[m, r]}]], 2]]]]
    pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[Total[pc[#] j^Total[CX[#, m+1]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!]
    array[n_, k_] := row[n] /. j -> k
    Table[array[n,d+m-n], {d,8}, {n,m,d+m-1}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition using a formula for binary Lyndon words. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = A337883(n,k) - A337885(n,k) = (A337883(n,k) + A337886(n,k)) / 2 = A337885(n,k) + A337886(n,k).

A337888 Array read by descending antidiagonals: T(n,k) is the number of unoriented colorings of the square faces of a regular n-dimensional orthotope (hypercube) using k or fewer colors.

Original entry on oeis.org

1, 2, 1, 3, 10, 1, 4, 56, 49127, 1, 5, 220, 740360358, 314824532572147370464, 1, 6, 680, 733776248840, 38491882660671134164965704408524083, 38343035259947576596859948806931124970404417593861154473053467181056, 1
Offset: 2

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

Each chiral pair is counted as one when enumerating unoriented arrangements. Each face is a square bounded by four edges. For n=2, the figure is a square with one face. For n=3, the figure is a cube with 6 faces. For n=4, the figure is a tesseract with 24 faces. The number of faces is 2^(n-2)*C(n,2).
Also the number of unoriented colorings of peaks of an n-dimensional orthoplex. A peak is an (n-3)-dimensional simplex.

Examples

			Array begins with T(2,1):
 1     2         3            4               5                 6 ...
 1    10        56          220             680              1771 ...
 1 49127 740360358 733776248840 155261523065875 12340612271439081 ...
		

Crossrefs

Cf. A337887 (oriented), A337889 (chiral), A337890 (achiral).
Other elements: A325013 (vertices), A337408 (edges).
Other polytopes: A337884 (simplex), A337892 (orthoplex).
Rows 2-4 are A000027, A198833, A331355.

Programs

  • Mathematica
    m=2; (* dimension of color element, here a square face *)
    Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n - m]];
    FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
    CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);
    PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
    row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]
    array[n_, k_] := row[n] /. b -> k
    Table[array[n,d+m-n], {d,6}, {n,m,d+m-1}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = A337887(n,k) - A337889(n,k) = (A337887(n,k) + A337890(n,k)) / 2 = A337889(n,k) + A337890(n,k).

A337891 Array read by descending antidiagonals: T(n,k) is the number of oriented colorings of the faces of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors.

Original entry on oeis.org

1, 2, 1, 3, 23, 1, 4, 333, 22409620, 1, 5, 2916, 9651199594275, 629648865588086369152, 1, 6, 16725, 96076801068337216, 76983765319971901895960429658208179, 63433230786931550329738915431918588874940416, 1
Offset: 2

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

Each chiral pair is counted as two when enumerating oriented arrangements. For n=2, the figure is a square with one square face. For n=3, the figure is an octahedron with 8 triangular faces. For higher n, the number of triangular faces is 8*C(n,3).
Also the number of oriented colorings of the peaks of an n-dimensional orthotope (hypercube). A peak is an (n-3)-dimensional orthotope.
The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).

Examples

			Array begins with T(2,1):
1        2             3                 4                     5 ...
1       23           333              2916                 16725 ...
1 22409620 9651199594275 96076801068337216 121265960728368199375 ...
		

Crossrefs

Cf. A337892 (unoriented), A337893 (chiral), A337894 (achiral).
Other elements: A325004 (vertices), A337411 (edges).
Other polytopes: A337883 (simplex), A337887 (orthotope).
Rows 2-4 are A000027, A000543, A331358

Programs

  • Mathematica
    m=2; (* dimension of color element, here a face *)
    Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];
    FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
    CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]], (per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]),0]);
    PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
    row[m]=b;
    row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]
    array[n_, k_] := row[n] /. b -> k
    Table[array[n,d+m-n], {d,6}, {n,m,d+m-1}] // Flatten

Formula

T(n,k) = A337892(n,k) + A337893(n,k) = 2*A337892(n,k) - A337894(n,k) = 2*A337893(n,k) + A337894(n,k).

A337893 Array read by descending antidiagonals: T(n,k) is the number of chiral pairs of colorings of the faces of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 66, 11158298, 0, 0, 920, 4825452718593, 314824333015938998688, 0, 0, 6350, 48038354542204960, 38491882659300767730994725249684096, 31716615393292685397985382790580028572676096, 0
Offset: 2

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

Each member of a chiral pair is a reflection, but not a rotation, of the other. For n=2, the figure is a square with one square face. For n=3, the figure is an octahedron with 8 triangular faces. For higher n, the number of triangular faces is 8*C(n,3).
Also the number of chiral pairs of colorings of the peaks of an n-dimensional orthotope (hypercube). A peak is an (n-3)-dimensional orthotope.

Examples

			Table begins with T(2,1):
 0        0             0                 0                    0 ...
 0        1            66               920                 6350 ...
 0 11158298 4825452718593 48038354542204960 60632976384183154375 ...
		

Crossrefs

Cf. A337891 (oriented), A337892 (unoriented), A337894 (achiral).
Other elements: A325006 (vertices), A337413 (edges).
Other polytopes: A337885 (simplex), A337889 (orthotope).
Rows 2-4 are A000004, A337896, A331360.

Programs

  • Mathematica
    m=2; (* dimension of color element, here a face *)
    Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];
    FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
    CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]],1,-1]Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);
    PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
    row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]
    array[n_, k_] := row[n] /. b -> k
    Table[array[n,d+m-n], {d,6}, {n,m,d+m-1}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = A337891(n,k) - A337892(n,k) = (A337891(n,k) - A337894(n,k)) / 2 = A337892(n,k) - A337894(n,k).

A337894 Array read by descending antidiagonals: T(n,k) is the number of achiral colorings of the faces of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors.

Original entry on oeis.org

1, 2, 1, 3, 21, 1, 4, 201, 93024, 1, 5, 1076, 294157089, 199556208371776, 1, 6, 4025, 91983927296, 1370366433970979158839987, 346179533768149850758531729588224, 1
Offset: 2

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

An achiral arrangement is identical to its reflection. For n=2, the figure is a square with one square face. For n=3, the figure is an octahedron with 8 triangular faces. For higher n, the number of triangular faces is 8*C(n,3).
Also the number of achiral colorings of the peaks of an n-dimensional orthotope (hypercube). A peak is an (n-3)-dimensional orthotope.

Examples

			Table begins with T(2,1):
1     2         3           4             5               6 ...
1    21       201        1076          4025           11901 ...
1 93024 294157089 91983927296 7960001890625 304914963625056 ...
		

Crossrefs

Cf. A337891 (oriented), A337892 (unoriented), A337893 (chiral).
Other elements: A325007 (vertices), A337414 (edges).
Other polytopes: A337886 (simplex), A337890 (orthotope).
Rows 2-4 are A000027, A337897, A331361.

Programs

  • Mathematica
    m=2; (* dimension of color element, here a face *)
    Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];
    FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
    CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]],0,(per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[])]);
    PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
    row[m]=b;
    row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]
    array[n_, k_] := row[n] /. b -> k
    Table[array[n,d+m-n], {d,7}, {n,m,d+m-1}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = 2*A337892(n,k) - A337891(n,k) = A337891(n,k) - 2*A337893(n,k) = A337892(n,k) - A337893(n,k).
Showing 1-5 of 5 results.