A337895 Number of oriented colorings of the tetrahedral facets (or vertices) of a regular 4-dimensional simplex using n or fewer colors.
1, 6, 21, 56, 127, 258, 483, 848, 1413, 2254, 3465, 5160, 7475, 10570, 14631, 19872, 26537, 34902, 45277, 58008, 73479, 92114, 114379, 140784, 171885, 208286, 250641, 299656, 356091, 420762, 494543, 578368, 673233
Offset: 1
Keywords
Examples
For a(2)=6, the colors are AAAAA, AAAAB, AAABB, AABBB, ABBBB, and BBBBB.
Links
- Index entries for linear recurrences with constant coefficients, signature (6, -15, 20, -15, 6, -1).
Crossrefs
Cf. A000389(n+4) (unoriented), A000389(chiral), A132366(n-1) (achiral), A331350 (edges, faces), A337952 (8-cell vertices, 16-cell facets), A337956(16-cell vertices, 8-cell facets), A338948 (24-cell), A338964 (120-cell, 600-cell).
Row 4 of A324999 (oriented colorings of facets or vertices of an n-simplex).
Programs
-
Mathematica
Table[n (24 + 35 n^2 + n^4)/60, {n, 40}]
Formula
a(n) = n * (24 + 35*n^2 + n^4) / 60.
a(n) = binomial[4+n,5] + binomial[n,5].
a(n) = 1*C(n,1) + 4*C(n,2) + 6*C(n,3) + 4*C(n,4) + 2*C(n,5), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
Comments