A337899 Number of chiral pairs of colorings of the edges of a regular tetrahedron using n or fewer colors.
0, 1, 21, 140, 575, 1785, 4606, 10416, 21330, 40425, 71995, 121836, 197561, 308945, 468300, 690880, 995316, 1404081, 1943985, 2646700, 3549315, 4694921, 6133226, 7921200, 10123750, 12814425, 16076151, 20001996
Offset: 1
Keywords
Examples
For a(2)=1, two opposite edges and one edge connecting those have one color; the other three edges have the other color.
Links
- Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1).
Crossrefs
Programs
-
Mathematica
Table[(n-1)n^2(n+1)(n^2-2)/24, {n, 40}]
Formula
a(n) = (n-1) * n^2 * (n+1) * (n^2-2) / 24.
a(n) = 1*C(n,2) + 18*C(n,3) + 62*C(n,4) + 75*C(n,5) + 30*C(n,6), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors.
G.f.: x^2 * (1+x) * (1+13x+x^2)/(1-x)^7.
Comments