A337956 Number of oriented colorings of the 8 cubic facets of a tesseract or of the 8 vertices of a hyperoctahedron.
1, 15, 126, 730, 3270, 11991, 37450, 102726, 253485, 573265, 1205556, 2384460, 4475926, 8031765, 13858860, 23106196, 37372545, 58837851, 90421570, 135971430, 200486286, 290376955, 413769126, 580852650, 804281725
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Programs
-
Mathematica
Table[Binomial[Binomial[n+1,2]+3,4] + Binomial[Binomial[n,2],4],{n,30}]
Formula
a(n) = binomial(binomial(n+1,2)+3,4) + binomial(binomial(n,2),4).
a(n) = n * (n+1) * (n^6 - n^5 + 7*n^4 + 29*n^3 + 16*n^2 - 4*n + 48) / 192.
a(n) = 1*C(n,1) + 13*C(n,2) + 84*C(n,3) + 312*C(n,4) + 735*C(n,5) + 1020*C(n,6) + 735*C(n,7) + 210*C(n,8), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
From Stefano Spezia, Oct 04 2020: (Start)
G.f.: x*(1 + 6*x + 27*x^2 + 52*x^3 + 102*x^4 + 21*x^5 + x^6)/(1 - x)^9.
a(n) = 9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-8) for n > 8.
(End)
Comments