A337957 Number of unoriented colorings of the 8 cubic facets of a tesseract or of the 8 vertices of a hyperoctahedron.
1, 15, 126, 715, 3060, 10626, 31465, 82251, 194580, 424270, 864501, 1663740, 3049501, 5359095, 9078630, 14891626, 23738715, 36890001, 56031760, 83369265, 121747626, 174792640, 247073751, 344291325, 473490550, 643304376
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Programs
-
Mathematica
Table[Binomial[Binomial[n+1,2]+3,4],{n,30}]
Formula
a(n) = binomial(binomial(n+1,2)+3,4).
a(n) = n * (n+1) * (n^2 + n + 2) * (n^2 + n + 4) * (n^2 + n + 6) / 384.
a(n) = 1*C(n,1) + 13*C(n,2) + 84*C(n,3) + 297*C(n,4) + 600*C(n,5) + 690*C(n,6) + 420*C(n,7) + 105*C(n,8), where the coefficient of C(n,k) is the number of unoriented colorings using exactly k colors.
From Stefano Spezia, Oct 04 2020: (Start)
G.f.: x*(1 + 6*x + 27*x^2 + 37*x^3 + 27*x^4 + 6*x^5 + x^6)/(1 - x)^9.
a(n) = 9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-8) for n > 8.
(End)
Comments