cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337958 Number of achiral colorings of the 8 cubic facets of a tesseract or of the 8 vertices of a hyperoctahedron.

Original entry on oeis.org

1, 15, 126, 700, 2850, 9261, 25480, 61776, 135675, 275275, 523446, 943020, 1623076, 2686425, 4298400, 6677056, 10104885, 14942151, 21641950, 30767100, 43008966, 59208325, 80378376, 107730000, 142699375, 186978051, 242545590
Offset: 1

Views

Author

Robert A. Russell, Oct 03 2020

Keywords

Comments

An achiral coloring is identical to its reflection. The Schläfli symbols for the tesseract and the hyperoctahedron are {4,3,3} and {3,3,4} respectively. Both figures are regular 4-D polyhedra and they are mutually dual.

Crossrefs

Cf. A337956 (oriented), A337956 (unoriented), A234249(n+1) (chiral).
Other elements: A331357 (hyperoctahedron edges, tesseract faces), A331361 (hyperoctahedron faces, tesseract edges), A337955 (hyperoctahedron facets, tesseract vertices).
Other polychora: A132366(n-1) (5-cell), A338951 (24-cell), A338967 (120-cell, 600-cell).
Row 4 of A325007 (orthotope facets, orthoplex vertices).

Programs

  • Mathematica
    Table[Binomial[Binomial[n+1,2]+3,4] - Binomial[Binomial[n,2],4],{n,30}]

Formula

a(n) = binomial(binomial(n+1,2)+3,4) - binomial(binomial(n,2),4).
a(n) = n^2 * (n+1)^2 * (n+3) * (n^2 -2n +4) / 48.
a(n) = 1*C(n,1) + 13*C(n,2) + 84*C(n,3) + 282*C(n,4) + 465*C(n,5) + 360*C(n,6) + 105*C(n,7), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
a(n) = 2*A337957(n) - A337956(n) = A337956(n) - 2 * A234249(n+1) = A337957(n) - A234249(n+1).
From Stefano Spezia, Oct 04 2020: (Start)
G.f.: x*(1 + 7*x + 34*x^2 + 56*x^3 + 8*x^4 - x^5)/(1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n > 8.
(End)