A337962 Number of achiral colorings of the 12 pentagonal faces of a regular dodecahedron or the 12 vertices of a regular icosahedron using n or fewer colors.
1, 68, 1659, 16464, 97935, 420708, 1443197, 4198720, 10770597, 25016740, 53619335, 107545296, 204013251, 369072900, 640912665, 1074021632, 1744341865, 2755557252, 4246675123, 6401066960, 9457144599, 13720858404
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Programs
-
Mathematica
Table[(15n^8+n^6+44n^2)/60,{n,30}]
Formula
a(n) = n^2 * (15*n^6 + n^4 + 44)/60.
a(n) = 1*C(n,1) + 66*C(n,2) + 1458*C(n,3) + 10232*C(n,4) + 31530*C(n,5) + 47892*C(n,6) + 35280*C(n,7) + 10080*C(n,8), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
From Stefano Spezia, Oct 04 2020: (Start)
G.f.: x*(1+59*x+1083*x^2+3897*x^3+3087*x^4+1083*x^5+59*x^6+x^7)/(1-x)^9.
a(n) = 9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-8) for n > 8.
(End)
Comments