cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A199406 The number of inequivalent ways to color the edges of a cube using at most n colors.

Original entry on oeis.org

1, 144, 12111, 358120, 5131650, 45528756, 288936634, 1433251296, 5887880415, 20842168600, 65402344161, 185788177224, 485443851256, 1181242399260, 2703252560100, 5864398969216, 12138503871789, 24101498435616, 46112016365155, 85335258695400, 153249227870046
Offset: 1

Views

Author

Geoffrey Critzer, Nov 05 2011

Keywords

Comments

Two edge colorings are equivalent if one is the mirror image of the other or the cube can be picked up and rotated in any manner to obtain the other.
The group here has order 48 (compare A060530). - N. J. A. Sloane, Aug 14 2012
Also the number of unoriented colorings of the 12 edges of a regular octahedron with n or fewer colors. The Schläfli symbols of the cube and octahedron are {4,3} and {3,4} respectively. They are mutually dual. For an unoriented coloring, chiral pairs are counted as one. - Robert A. Russell, Oct 17 2020

Crossrefs

Cf. A060530 (oriented), A337406 (chiral), A331351 (achiral), A128766 (cube vertices, octahedron faces), A198833 (cube faces, octahedron vertices), A063842(n-1) (tetrahedron), A337963 (dodecahedron, icosahedron).
Row 3 of A337408 (orthotope edges, orthoplex ridges) and A337412 (orthoplex edges, orthotope ridges).

Programs

  • Mathematica
    Table[CycleIndex[KSubsetGroup[Automorphisms[CubicalGraph], Edges[CubicalGraph]],s] /. Table[s[i]->n, {i,1,6}], {n,1,15}]
    Table[(8n^2+12n^3+8n^4+4n^6+12n^7+3n^8+n^12)/48, {n,20}] (* Robert A. Russell, Oct 17 2020 *)

Formula

a(n) = n^12/48 + n^8/16 + n^7/4 + n^6/12 + n^4/6 + n^3/4 + n^2/6.
Cycle index = 1/48(s_1^12+3s_1^4s_2^4+12s_1^2s_2^5+4s_2^6+8s_3^4+12s_4^3+8s_6^2).
G.f.: -x*(76*x^10 +10016*x^9 +212772*x^8 +1380453*x^7 +3384939*x^6 +3388593*x^5 +1380279*x^4 +211623*x^3 +10317*x^2 +131*x +1)/(x -1)^13. [Colin Barker, Aug 13 2012]
From Robert A. Russell, Oct 17 2020: (Start)
a(n) = A060530(n) - A337406(n) = (A060530(n) + A331351(n)) / 2 = A337406(n) + A331351(n).
a(n) = 1*C(n,1) + 142*C(n,2) + 11682*C(n,3) + 310536*C(n,4) + 3460725*C(n,5) + 19870590*C(n,6) + 65886660*C(n,7) + 133585200*C(n,8) + 168399000*C(n,9) + 128898000*C(n,10) + 54885600*C(n,11) + 9979200*C(n,12), where the coefficient of C(n,k) is the number of unoriented colorings using exactly k colors. (End)

A282670 Number of inequivalent ways to color the edges of a dodecahedron using at most n colors.

Original entry on oeis.org

0, 1, 17912448, 3431529649899, 19215359484207104, 15522042948408209375, 3684565329384186949248, 375655671519845961645597, 20632333988160040350515200, 706519304587399981447927557, 16666666666669166670000400000, 290823371148118276083759139095
Offset: 0

Views

Author

David Nacin, Feb 20 2017

Keywords

Comments

Cycle index of symmetry group A5 acting on the 30 edges of the dodecahedron is (24s(5)^6 + 20s(3)^10 + 15s(2)^14*s(1)^2 + s(1)^30)/60.
Also the number of inequivalent ways to color the edges of the icosahedron using at most n colors.
From Robert A. Russell, Oct 03 2020: (Start)
Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the regular icosahedron and regular dodecahedron are {3,5} and {5,3} respectively. They are mutually dual. There are 60 elements in the rotation group of the regular dodecahedron/icosahedron. They divide into five conjugacy classes. The first formula is obtained by averaging the edge cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Even Cycle Indices
Identity 1 x_1^30
Edge rotation 15 x_1^2x_2^14
Vertex rotation 20 x_3^10
Small face rotation 12 x_5^6
Large face rotation 12 x_5^6 (End)

Examples

			There are a(2) = 17912448 inequivalent ways to color the edges of the dodecahedron using at most two colors.
		

Crossrefs

Other elements: A054472 (dodecahedron vertices, icosahedron faces), A000545 (dodecahedron faces, icosahedron vertices).
Other polyhedra: A046023 (tetrahedron), A060530 (cube/octahedron).
Cf. A337963 (unoriented), A337964 (chiral), A337953 (achiral).

Programs

  • Mathematica
    Table[(24n^6+20n^10+15n^16+n^30)/60, {n, 0, 16}]

Formula

a(n) = n^6 (n^24 + 15 n^10 + 20 n^4 + 24)/60.
G.f.: x*(1 + x)*(1 + 17912416*x + 3430956452060*x^2 + 19105559437892000*x^3 + 14908856825730677891*x^4 + 3197392859155796794496*x^5 + 265368238349945588707496*x^6 + 10365795256050146806088576*x^7 + 215154060506484358838662001*x^8 + 2568188846096433625477331936*x^9 + 18582986600475456162494990756*x^10 + 84400699070086923625163495456*x^11 + 245956255494355672481225103371*x^12 + 465612713610802763378946154496*x^13 + 575747234318647571242943474096*x^14 + 465612713610802763378946154496*x^15 + 245956255494355672481225103371*x^16 + 84400699070086923625163495456*x^17 + 18582986600475456162494990756*x^18 + 2568188846096433625477331936*x^19 + 215154060506484358838662001*x^20 + 10365795256050146806088576*x^21 + 265368238349945588707496*x^22 + 3197392859155796794496*x^23 + 14908856825730677891*x^24 + 19105559437892000*x^25 + 3430956452060*x^26 + 17912416*x^27 + x^28) / (1 - x)^31. - Colin Barker, Mar 30 2019
From Robert A. Russell, Oct 03 2020: (Start)
a(n) = 1*C(n,1) + 17912446*C(n,2) + 3431475912558*C(n,3) + 19201633473082192*C(n,4) + 15426000466104548370*C(n,5) + 3591721233455676488292*C(n,6) + 350189004698594439734160*C(n,7) + 17729388555701917767855840*C(n,8) + 534044352737570253478824960*C(n,9) + 10485619820879148545218980480*C(n,10) + 143066535726280748444739676800*C(n,11) + 1420876074163106703694904352000*C(n,12) + 10631861498419617103267350931200*C(n,13) + 61515486939441778743810979468800*C(n,14) + 280711222366395106969585943040000*C(n,15) + 1025499893865270227589218761728000*C(n,16) + 3032858772294885663526454593536000*C(n,17) + 7319173455487770465200322686976000*C(n,18) + 14487618384525410959295952691200000*C(n,19) + 23580333216029318427870396825600000*C(n,20) + 31555723729541430372276884520960000*C(n,21) + 34619561317726617824610327429120000*C(n,22) + 30946535969611314628728933580800000*C(n,23) + 22311118596400512968549479219200000*C(n,24) + 12771433990957347267674112000000000*C(n,25) + 5668281691036644651075462758400000*C(n,26) + 1879979643918904128084836352000000*C(n,27) + 438404032189593555246120960000000*C(n,28) + 64102774454612839170441216000000*C(n,29) + 4420880996869850977271808000000*C(n,30), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
a(n) = A337963(n) + A337964(n) = 2*A337963(n) - A337953(n) = 2*A337964(n) + A337953(n). (End)

A337953 Number of achiral colorings of the 30 edges of a regular dodecahedron or icosahedron using n or fewer colors.

Original entry on oeis.org

1, 33328, 32524281, 4312863360, 191243490675, 4239501280272, 58236754527707, 563536359633920, 4172726943804861, 25016666666700400, 126431377927701253, 554909560378102656, 2163457078062360639, 7625429483925609552, 24638829565429941975
Offset: 1

Views

Author

Robert A. Russell, Oct 03 2020

Keywords

Comments

An achiral coloring is identical to its reflection. The Schläfli symbols for the regular icosahedron and regular dodecahedron are {3,5} and {5,3} respectively. They are mutually dual.
There are 60 elements in the automorphism group of the regular dodecahedron/icosahedron that are not in the rotation group. They divide into five conjugacy classes. The first formula is obtained by averaging the edge cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Odd Cycle Indices
Inversion 1 x_2^15
Edge rotation* 15 x_1^4x_2^13 Asterisk indicates that the
Vertex rotation* 20 x_6^5 operation is followed by an
Small face rotation* 12 x_10^3 inversion.
Large face rotation* 12 x_10^3

Crossrefs

Cf. A282670 (oriented), A337963 (unoriented), A337964 (chiral).
Other elements: A337960 (dodecahedron vertices, icosahedron faces), A337962 (dodecahedron faces, icosahedron vertices).
Cf. A037270 (tetrahedron), A331351 (cube/octahedron).

Programs

  • Mathematica
    Table[(15n^17+n^15+20n^5+24n^3)/60,{n,30}]

Formula

a(n) = n^3 * (15*n^14 + n^12 + 20*n^2 + 24) / 60.
a(n) = 1*C(n,1) + 33326*C(n,2) + 32424300*C(n,3) + 4182966200*C(n,4) + 170004083410*C(n,5) + 3156083300916*C(n,6) + 32426546302332*C(n,7) + 205938803790720*C(n,8) + 864860752435680*C(n,9) + 2503126577952000*C(n,10) + 5110943178781440*C(n,11) + 7428048096268800*C(n,12) + 7644417350169600*C(n,13) + 5446616304729600*C(n,14) + 2556525184012800*C(n,15) + 711374856192000*C(n,16) + 88921857024000*C(n,17), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
a(n) = 2*A337963(n) - A282670(n) = A282670(n) - 2*A337964(n) = A337963(n) - A337964(n).

A337964 Number of chiral pairs of colorings of the 30 edges of a regular dodecahedron or icosahedron using n or fewer colors.

Original entry on oeis.org

0, 8939560, 1715748562809, 9607677585671872, 7761021378582359350, 1842282662572342834488, 187827835730804603558945, 10316166993798251995440640, 353259652291613627252061348
Offset: 1

Views

Author

Robert A. Russell, Oct 03 2020

Keywords

Comments

Each member of a chiral pair is a reflection, but not a rotation, of the other. The Schläfli symbols for the regular icosahedron and regular dodecahedron are {3,5} and {5,3} respectively. They are mutually dual.

Crossrefs

Cf. A282670 (oriented), A337963 (unoriented), A337953 (achiral).
Other elements: A337959 (dodecahedron vertices, icosahedron faces), A337961 (dodecahedron faces, icosahedron vertices).
Other polyhedra: A337899 (tetrahedron), A337406 (cube/octahedron).

Programs

  • Mathematica
    Table[(n^30-15n^17+15n^16-n^15+20n^10+24n^6-20n^5-24n^3)/120,{n,30}]

Formula

a(n) = (n^30 - 15*n^17 + 15*n^16 - n^15 + 20*n^10 + 24*n^6 - 20*n^5 - 24*n^3) / 120.
a(n) = 8939560*C(n,2) + 1715721744129*C(n,3) + 9600814645057996*C(n,4) + 7713000148050232480*C(n,5) + 1795860615149796593688*C(n,6) + 175094502333083946715914*C(n,7) + 8864694277747989482032560*C(n,8) + 267022176368352696363194640*C(n,9) + 5242809910438322709320514240*C(n,10) + 71533267863137818750780447680*C(n,11) + 710438037081549637823404041600*C(n,12) + 5315930749209804729425000380800*C(n,13) + 30757743469720886648597337369600*C(n,14) + 140355611183197552206530379513600*C(n,15) + 512749946932635113438921952768000*C(n,16) + 1516429386147442831718766368256000*C(n,17) + 3659586727743885232600161343488000*C(n,18) + 7243809192262705479647976345600000*C(n,19) + 11790166608014659213935198412800000*C(n,20) + 15777861864770715186138442260480000*C(n,21) + 17309780658863308912305163714560000*C(n,22) + 15473267984805657314364466790400000*C(n,23) + 11155559298200256484274739609600000*C(n,24) + 6385716995478673633837056000000000*C(n,25) + 2834140845518322325537731379200000*C(n,26) + 939989821959452064042418176000000*C(n,27) + 219202016094796777623060480000000*C(n,28) + 32051387227306419585220608000000*C(n,29) + 2210440498434925488635904000000*C(n,30), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors.
a(n) = A282670(n) - A337963(n) = (A282670(n) - A337953(n)) / 2 = A337963(n) - A337953(n).

A378473 The number of n-colorings of the vertices of the truncated octahedron up to rotation and reflection.

Original entry on oeis.org

0, 1, 355048, 5886817533, 5864336054656, 1241773051013125, 98716454926955496, 3991277735434713913, 98382652674879674368, 1661801013342756245961, 20833333958666683585000, 205202766952229526577141, 1656184328295547539616128, 11308349424395689922231053
Offset: 0

Views

Author

Peter Kagey, Nov 27 2024

Keywords

Comments

Equivalently, the number of n-colorings of the faces of the tetrakis hexahedron, which is the polyhedral dual of the truncated octahedron.
Colorings are counted up to the full octahedral group of order 48.

Crossrefs

Formula

a(n) = (1/48)*(n^24 + 3*n^16 + 16*n^12 + 8*n^8 + 12*n^6 + 8*n^4).
Asymptotically, a(n) ~ n^24/48.

A378474 The number of n-colorings of the vertices of the truncated cuboctahedron up to rotation and reflection.

Original entry on oeis.org

0, 1, 5864068667776, 1661800897546646288751, 1650586719047285117763813376, 74014868308343792955106160546875, 467755368903219944377426648894114176, 764653504526960946768130306131125170501, 464598858302721315450530067459906444722176
Offset: 0

Views

Author

Peter Kagey, Nov 27 2024

Keywords

Comments

Equivalently, the number of n-colorings of the faces of the disdyakis dodecahedron, which is the polyhedral dual of the truncated cuboctahedron.
Colorings are counted up to the full octahedral group of order 48.

Crossrefs

Formula

a(n) = (1/48)*(n^48 + 19*n^24 + 8*n^16 + 12*n^12 + 8*n^8).
Asymptotically, a(n) ~ n^48/48.

A378475 The number of n-colorings of the vertices of the snub cube up to rotation.

Original entry on oeis.org

0, 1, 700688, 11768099013, 11728130343936, 2483526957328125, 197432556580265616, 7982551312716034313, 196765270145344012288, 3323601794975613468921, 41666666667041700250000, 410405528159827444816781, 3312368633477962187301888, 22616698765607508420521013
Offset: 0

Views

Author

Peter Kagey, Nov 27 2024

Keywords

Comments

Equivalently, the number of n-colorings of the faces of the pentagonal icositetrahedron, which is the polyhedral dual of the snub cube.
Colorings are counted up to the rotational octahedral symmetry group of order 24.
This is also:
1) The number of n-colorings of the vertices of the truncated octahedron (equivalently faces of the tetrakis hexahedron) up to rotational octahedral symmetry (alternatively full tetrahedral symmetry).
2) The number of n-colorings of the vertices of the truncated cube (equivalently faces of the triakis octahedron) up to rotational octahedral symmetry.

Crossrefs

Formula

a(n) = (1/24)*(n^24 + 9*n^12 + 8*n^8 + 6*n^6).
Asymptotically, a(n) ~ n^24/24.

A378476 The number of n-colorings of the vertices of the truncated dodecahedron up to rotation and reflection.

Original entry on oeis.org

0, 1, 9607679885269312, 353259652293727442874919719, 11076899964874301400431118585745408, 7228014483236696229750911410649667971875, 407280649839077145745380578110103790290896704, 4233515506163528044351709372473136729199352546645
Offset: 0

Views

Author

Peter Kagey, Nov 27 2024

Keywords

Comments

Equivalently,
1) the number of n-colorings of the faces of the triakis icosahedron, which is the polyhedral dual of the truncated dodecahedron.
2) the number of n-colorings of the faces of the pentakis dodecahedron, or n-colorings of the vertices of the truncated icosahedron, its polyhedral dual.
3) the number of n-colorings of the faces of the deltoidal hexecontahedron, or n-colorings of the vertices of the rhombicosidodecahedron, its polyhedral dual.
Colorings are counted up to the full icosahedral symmetry group of order 120.

Crossrefs

Formula

a(n) = (1/120)*(n^60 + 15*n^32 + 16*n^30 + 20*n^20 + 24*n^12 + 20*n^10 + 24*n^6).
Asymptotically, a(n) ~ n^60/120.

Extensions

a(0) = 0 prepended by Georg Fischer, Apr 16 2025

A378477 The number of n-colorings of the vertices of the truncated icosidodecahedron up to rotation and reflection.

Original entry on oeis.org

0, 1, 11076899964874299238703297447907328, 14975085832620260086776498590197757887552760437584786915, 14723725539819869413194145839524321308612931385268246121155792029614080, 6269303204385533375833261531851976948366440371233447120478861810030555725146484375
Offset: 0

Views

Author

Peter Kagey, Nov 27 2024

Keywords

Comments

Equivalently, the number of n-colorings of the faces of the disdyakis triacontahedron, which is the polyhedral dual of the truncated octahedron.
Colorings are counted up to the full icosahedral symmetry group of order 120.

Crossrefs

Formula

a(n) = 1/120*(n^120 + 31*n^60 + 20*n^40 + 24*n^24 + 20*n^20 + 24*n^12).
Asymptotically, a(n) ~ n^120/120

A378478 The number of n-colorings of the vertices of the snub dodecahedron up to rotation.

Original entry on oeis.org

0, 1, 19215358678900736, 706519304586988199183738259, 22153799929748598169960860333637632, 14456028966473392453665534687042333984375, 814561299678154291488767806377392301451223040, 8467031012327056088703142262372040966699399765293
Offset: 0

Views

Author

Peter Kagey, Nov 27 2024

Keywords

Comments

Equivalently, the number of n-colorings of the faces of the pentagonal hexecontahedron, which is the polyhedral dual of the snub dodecahedron.
Colorings are counted up to the rotational icosahedral symmetry group of order 60.

Crossrefs

Formula

a(n) = 1/60*(n^60 + 15*n^30 + 20*n^20 + 24*n^12).
Asymptotically, a(n) ~ n^60/60.
Showing 1-10 of 10 results.