A337983 Number of compositions of n into distinct parts, any two of which have a common divisor > 1.
1, 0, 1, 1, 1, 1, 3, 1, 3, 3, 5, 1, 13, 1, 13, 7, 19, 1, 35, 1, 59, 15, 65, 1, 117, 5, 133, 27, 195, 1, 411, 7, 435, 67, 617, 17, 941, 7, 1177, 135, 1571, 13, 2939, 31, 3299, 375, 4757, 13, 6709, 43, 8813, 643, 11307, 61, 16427, 123, 24331, 1203, 30461, 67
Offset: 0
Keywords
Examples
The a(2) = 1 through a(15) = 7 compositions (A..F = 10..15): 2 3 4 5 6 7 8 9 A B C D E F 24 26 36 28 2A 2C 3C 42 62 63 46 39 4A 5A 64 48 68 69 82 84 86 96 93 A4 A5 A2 C2 C3 246 248 264 284 426 428 462 482 624 824 642 842
Crossrefs
A318717 is the unordered version.
A318719 is the version for Heinz numbers of partitions.
A337561 is the pairwise coprime instead of pairwise non-coprime version, or A337562 if singletons are considered coprime.
A337605*6 counts these compositions of length 3.
A337696 ranks these compositions.
A101268 counts pairwise coprime or singleton compositions.
A233564 ranks strict compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
A337694 lists numbers with no two relatively prime prime indices.
Programs
-
Mathematica
stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2]; Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&&stabQ[#,CoprimeQ]&]],{n,0,30}]
Comments