A337987 Odd numbers whose distinct prime indices are pairwise coprime, where a singleton is not considered coprime unless it is (1).
15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 93, 95, 99, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 201, 205, 207, 209, 215, 217, 219, 221, 225, 245, 249, 253, 255, 265, 275, 279, 287, 291, 295, 297, 309, 323, 327, 329, 335, 341, 355, 363, 369
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 15: {2,3} 135: {2,2,2,3} 215: {3,14} 33: {2,5} 141: {2,15} 217: {4,11} 35: {3,4} 143: {5,6} 219: {2,21} 45: {2,2,3} 145: {3,10} 221: {6,7} 51: {2,7} 153: {2,2,7} 225: {2,2,3,3} 55: {3,5} 155: {3,11} 245: {3,4,4} 69: {2,9} 161: {4,9} 249: {2,23} 75: {2,3,3} 165: {2,3,5} 253: {5,9} 77: {4,5} 175: {3,3,4} 255: {2,3,7} 85: {3,7} 177: {2,17} 265: {3,16} 93: {2,11} 187: {5,7} 275: {3,3,5} 95: {3,8} 201: {2,19} 279: {2,2,11} 99: {2,2,5} 205: {3,13} 287: {4,13} 119: {4,7} 207: {2,2,9} 291: {2,25} 123: {2,13} 209: {5,8} 295: {3,17}
Crossrefs
A337694 is a pairwise non-coprime instead of pairwise coprime version.
A337984 is the squarefree case.
A338315 counts the partitions with these Heinz numbers.
A338316 considers singletons coprime.
A007359 counts partitions into singleton or pairwise coprime parts with no 1's, with Heinz numbers A302568.
A304709 counts partitions whose distinct parts are pairwise coprime.
A337561 counts pairwise coprime strict compositions.
A337697 counts pairwise coprime compositions with no 1's.
Programs
-
Mathematica
Select[Range[1,100,2],CoprimeQ@@Union[PrimePi/@First/@FactorInteger[#]]&]
Comments