A337988 Numbers that are the sum of the squares of two of their distinct divisors.
20, 80, 90, 180, 272, 320, 360, 468, 500, 650, 720, 810, 980, 1088, 1280, 1332, 1440, 1620, 1872, 2000, 2250, 2420, 2448, 2450, 2600, 2880, 2900, 3240, 3380, 3600, 3920, 4160, 4212, 4352, 4410, 4500, 5120, 5328, 5760, 5780, 5850, 6480, 6642, 6800, 7220, 7290, 7488, 7650
Offset: 1
Keywords
Examples
20 = 2^2 + 4^2, so 20 is in the sequence.
Links
Crossrefs
Cf. A000404.
Programs
-
Mathematica
Select[Range[10^4], 1 == Catch@ Do[Do[If[#2[[i]]^2 + #2[[j]]^2 == #1, Throw[1]], {j, i + 1, #3}], {i, #3}] & @@ {#, Divisors[#], DivisorSigma[0, #]} &] (* Michael De Vlieger, Oct 10 2020 *)
-
PARI
isok(m) = {my(d=divisors(m)); for (i=2, #d, for (j=1, i-1, if (d[i]^2+d[j]^2 == m, return (1));););} \\ Michel Marcus, Oct 07 2020
-
Python
from sympy import divisors, integer_nthroot A337988_list = [] for n in range(1,10**6): for d in divisors(n): if 2*d*d >= n: break a, b = integer_nthroot(n-d*d,2) if b and n % a == 0: A337988_list.append(n) break # Chai Wah Wu, Oct 30 2020
Extensions
More terms from Michel Marcus, Oct 07 2020