cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337991 Triangle read by rows: T(n,m) = Sum_{i=1..n} C(n,i-m)*C(n+m-i,i-1)*C(n+m-i,m)/n, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 4, 1, 4, 13, 15, 7, 1, 9, 35, 52, 36, 11, 1, 21, 96, 175, 160, 75, 16, 1, 51, 267, 576, 655, 415, 141, 22, 1, 127, 750, 1869, 2541, 2030, 952, 245, 29, 1, 323, 2123, 6000, 9492, 9156, 5488, 1988, 400, 37, 1, 835, 6046, 19107, 34476, 38976, 28476, 13356, 3852, 621, 46, 1
Offset: 0

Views

Author

Vladimir Kruchinin, Oct 06 2020

Keywords

Examples

			Triangle begins as:
   1;
   1,   1;
   1,   2,   1;
   2,   5,   4,   1;
   4,  13,  15,   7,   1;
   9,  35,  52,  36,  11,   1;
  21,  96, 175, 160,  75,  16,  1;
  51, 267, 576, 655, 415, 141, 22,  1;
  ...
		

Crossrefs

Diagonals include: A000124, A006008.
Sums include: A000007 (signed row), A019590 (signed diagonal), A025227 (row), A102407 (diagonal).

Programs

  • Magma
    B:=Binomial;
    A337991:= func< n,k | n eq 0 select 1 else (1/n)*(&+[B(n, j-k)*B(n+k-j, j-1)*B(n+k-j, k): j in [1..n]]) >;
    [A337991(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 31 2024
    
  • Mathematica
    T[0, 0] = 1; T[n_, m_] := Sum[Binomial[n, i - m] * Binomial[n + m - i, i - 1] * Binomial[n + m - i, m]/n, {i, 1, n}]; Table[T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Amiram Eldar, Oct 06 2020 *)
  • Maxima
    T(n,m):=if m=n then 1 else if n=0 then 0 else sum(binomial(n,i-m)*binomial(n+m-i,i-1)*binomial(n+m-i,m),i,1,n)/n;
    
  • Python
    def A337991(n,k):
        b=binomial
        if n==0: return 1
        else: return (1/n)*sum(b(n, j-k)*b(n+k-j, j-1)*b(n+k-j, k) for j in range(1,n+1))
    # SageMath
    flatten([[A337991(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 31 2024

Formula

G.f.: ( 1 - x*(y-1)- sqrt(x^2*(y^2-2*y-3) - 2*x*(y+1) + 1) )/(2*x).
From G. C. Greubel, Oct 31 2024: (Start)
T(n, k) = binomial(n, 1-k)*binomial(n+k-1, k)*Hypergeometric3F2([1-n, (1 -n -k)/2, (2-n-k)/2], [2-k, 1-n-k], 4), with T(0, 0) = 1.
T(n, 0) = A086246(n+1).
T(n, n-1) = A000124(n-1), n >= 1.
T(n, n-2) = A006008(n-1), n >= 2.
T(n, n-3) = (1/72)*(n^4 -6*n^3 +47*n^2 -114*n +144)*binomial(n-1,2), n >= 3.
T(n, n-4) = (1/480)*(n-2)*(n^4 -8*n^3 +99*n^2 -332*n +960)*binomial(n-1,3), n >= 4.
Sum_{k=0..n} T(n, k) = A025227(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A102407(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A019590(n+1). (End)