cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337997 Triangle read by rows, generalized Eulerian polynomials evaluated at x = 1.

Original entry on oeis.org

1, 0, 1, 0, 2, 8, 0, 6, 48, 162, 0, 24, 384, 1944, 6144, 0, 120, 3840, 29160, 122880, 375000, 0, 720, 46080, 524880, 2949120, 11250000, 33592320, 0, 5040, 645120, 11022480, 82575360, 393750000, 1410877440, 4150656720
Offset: 0

Views

Author

Peter Luschny, Oct 07 2020

Keywords

Examples

			Polynomial triangle starts:
[0] 1
[1] 0, 1
[2] 0, 1+x, x^2+6*x+1
[3] 0, x^2+4*x+1, x^3+23*x^2+23*x+1, 8*x^3+93*x^2+60*x+1
[4] 0, x^3+11*x^2+11*x+1, x^4+76*x^3+230*x^2+76*x+1, 16*x^4+545*x^3+1131*x^2+251*x+
1, 81*x^4+1996*x^3+3446*x^2+620*x+1
Integer triangle starts:
[0] 1
[1] 0,    1
[2] 0,    2,      8
[3] 0,    6,     48,      162
[4] 0,   24,    384,     1944,     6144
[5] 0,  120,   3840,    29160,   122880,    375000
[6] 0,  720,  46080,   524880,  2949120,  11250000,   33592320
[7] 0, 5040, 645120, 11022480, 82575360, 393750000, 1410877440, 4150656720
		

Crossrefs

Programs

  • Maple
    # Two alternative implementations are given in the link.
    GeneralizedEulerianPolynomial := proc(n, k, x) local S;
       if n = 0 then  return 1 fi;
       S := m -> add((-1)^j*binomial(n+1,j)*(k*(m-j)+1)^n*signum(k*(m-j)+1),j=0..n+1);
       add(S(m)*x^m, m=0..n)/2 end:
    T := (n, k) -> subs(x=1, GeneralizedEulerianPolynomial(n, k, x)):
    for n from 0 to 6 do seq(T(n, k), k=0..n) od;

Formula

The polynomials are defined P(0,0,x)=1 and P(n,k,x) = (1/2)*Sum_{m=0..n} S(m)*x^m where S(m) = Sum_{j=0..n+1}(-1)^j*binomial(n+1,j)*(k*(m-j)+1)^n*signum(k*(m-j)+1).
T(n, k) = P(n, k, 1).
T(n, k) = n!*k^n. - Hugo Pfoertner, Oct 07 2020