A338166 Terms of A338039 that are repeated concatenations of smaller integers.
1818, 8181, 181818, 198198, 405405, 484848, 504504, 565656, 576576, 656565, 675675, 818181, 848484, 891891, 11311131, 13041304, 13111311, 18181818, 19981998, 22622262, 26222622, 33933393, 39333933, 40314031, 41544154, 45144514, 46364636, 63646364, 81818181, 87498749, 89918991, 94789478
Offset: 1
Links
- Michel Marcus, Table of n, a(n) for n = 1..1050 (up to 15 digits).
- Daniel Tsai, A recurring pattern in natural numbers of a certain property, arXiv:2010.03151 [math.NT], 2020.
- Daniel Tsai, A recurring pattern in natural numbers of a certain property, Integers (2021) Vol. 21, Article #A32.
Programs
-
Mathematica
Block[{f}, f[1] = 0; f[n_] := Plus @@ #[[All, 1]] + Plus @@ Select[#[[All, -1]], # > 1 &] &@ FactorInteger[n]; Select[Union@ Flatten@ Table[Union@ Flatten@ Map[Function[k, Map[FromDigits[Join @@ ConstantArray[IntegerDigits[#], n/k]] &, Range[10^(k - 1), 10^k - 1]]], Most@ Divisors[n]], {n, 3, 8}], And[Mod[#1, 10] != 0, #2 != #1, f[#1] == f[#2]] & @@ {#, IntegerReverse[#]} &] ] (* Michael De Vlieger, May 27 2021, after Amiram Eldar at A338039 *)
-
PARI
f(n) = my(f=factor(n)); vecsum(f[,1]) + sum(k=1, #f~, if (f[k,2]!=1, f[k,2])); \\ A338038 isok(m) = my(r=fromdigits(Vecrev(digits(m)))); if ((r != m) && (f(r) == f(m)), return(m)); listc(c) = {my(list = List()); fordiv(c, d, if ((d != 1) && (d != c), for(k=10^(d-1), 10^d, if (k % 10, my(sk = Str(k), skk = sk); for (j=1, c/d-1, sk = concat(sk, skk)); if (isok(eval(sk)), listput(list, eval(sk))););););); list;} lista(nn) = {my(list = List()); forcomposite(c=1, nn, my(clist = Vec(listc(c))); for (k=1, #clist, listput(list, clist[k]));); vecsort(Vec(list),,8);} lista(8) \\ to get terms up to 8 digits
Comments